
IBM POWER7 multicore
server processor

B. Sinharoy
R. Kalla

W. J. Starke
H. Q. Le

R. Cargnoni
J. A. Van Norstrand

B. J. Ronchetti
J. Stuecheli
J. Leenstra

G. L. Guthrie
D. Q. Nguyen

B. Blaner
C. F. Marino

E. Retter
P. Williams

The IBM POWERA processor is the dominant reduced instruction set
computing microprocessor in the world today, with a rich history
of implementation and innovation over the last 20 years. In this
paper, we describe the key features of the POWER7A processor chip.
On the chip is an eight-core processor, with each core capable of
four-way simultaneous multithreaded operation. Fabricated in IBM’s
45-nm silicon-on-insulator (SOI) technology with 11 levels of metal,
the chip contains more than one billion transistors. The processor
core and caches are significantly enhanced to boost the
performance of both single-threaded response-time-oriented,
as well as multithreaded, throughput-oriented applications.
The memory subsystem contains three levels of on-chip cache,
with SOI embedded dynamic random access memory (DRAM)
devices used as the last level of cache. A new memory interface
using buffered double-data-rate-three DRAM and improvements
in reliability, availability, and serviceability are discussed.

Introduction
Over the years, IBM POWER* processors [1–4] have
introduced reduced instruction set computing architecture,
advanced branch prediction, out-of-order execution, data
prefetching, multithreading, dual-core chip, core accelerators
[5], on-chip high-bandwidth memory controller, and highly
scalable symmetric multiprocessing (SMP) interconnect.
In this seventh-generation POWER processor [6–9],
IBM introduces a balanced, eight-core multichip design,
with large on-chip embedded dynamic random access
memory (eDRAM) caches, and high-performance four-way
multithreaded cores, implementing IBM PowerPC*
architecture version 2.06 [10].
Starting in 2001 with POWER4* in 180-nm technology

up to POWER6* in 65-nm, spanning four technology
generations, all POWER processors were designed with
two cores on the processor chip. The emphasis had been
to stay with two cores per chip and significantly improve
per-core performance by improving the core and cache
microarchitectures, as well as exploiting the socket resources
by only two cores on the chip. The socket resources that
have an impact on performance include chip power, various
off-chip bandwidths such as input/output (I/O), memory,
and SMP bandwidths, as well as socket-level cache and

memory capacity. As we add more cores to share the existing
socket resources in a given technology generation, per-core
performance can be negatively affected. Unlike previous
generation POWER processors, in POWER7*, four times as
many cores share the socket resources. Along with significant
slowdown in the performance improvements from the silicon
technology, this makes it more challenging to significantly
improve the per-core performance of POWER7 over
POWER6.
The goal of POWER7 was to improve the socket-level,

core-level, and thread-level performances significantly over
POWER6 while achieving all of the following in one
technology generation.

• Reduce the core area and power to such an extent that
four times as many cores can be placed on the processor
chip in the same power envelope as that of POWER6.
To reduce power, processor frequency is reduced in
POWER7, while higher performance is achieved
through much more emphasis on microarchitecture
improvements, such as aggressive out-of-order execution,
advanced four-way simultaneous multithreading (SMT),
advanced branch prediction, advanced prefetching, and
cache and memory latency reduction and bandwidth
improvement.

• Fit the POWER7 chip in the same socket as POWER6
and utilize the same SMP and I/O buses as in POWER6

�Copyright 2011 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

B. SINHAROY ET AL. 1 : 1IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

0018-8646/11/$5.00 B 2011 IBM

Digital Object Identifier: 10.1147/JRD.2011.2127330

(but running at higher frequency), which allows faster
time to market and more continuity in POWER system
designs. The memory bus has been redesigned to run at a
much higher frequency using differential signaling to
support the high memory bandwidth requirements of the
eight high-performance cores on the processor chip.

• Remove the external Level 3 (L3) cache chips used in
previous designs in order to reduce the system cost and
power and save on the significant chip I/O bandwidth
(and associated processor chip area) that would
otherwise be needed for connecting with external L3
cache chips.

• For significant performance improvement in
high-performance computing (HPC), double the
floating-point capability of each POWER7 core,
compared with POWER6, yielding 8� more
floating-point operations (FLOPs) per cycle per
processor chip.

POWER7 is fabricated in IBM’s 45-nm
silicon-on-insulator technology using copper interconnects.
The chip area is 567 mm2 and contains 1.2-billion transistors.
Since each eDRAM cell provides the function of a
six-transistor (6T) static random access memory (SRAM)
cell, POWER7 has the equivalent function of a
2.7-billion-transistor chip.
eDRAM [11, 12] is a key technology innovation on the

POWER7 chip. This allows the large 32-MB-shared-L3
cache to be on-chip, which provides several advantages
such as improved L3 latency by elimination of off-chip
drivers and receivers and wire-length reduction, improved L3
bandwidth per core (on-chip interconnects provide each core
with 32-byte buses to and from the L3), and less area and
power, compared with SRAM. In summary, on-chip eDRAM
in POWER7 provides one-sixth the latency, twice the
bandwidth, compared with off-chip eDRAM, and one-fifth
standby power in one-third the area, compared with SRAM.
Figure 1 shows the POWER7 chip, which has eight

processor cores, each with 12 execution units capable of
simultaneously running four threads. To feed these
eight high-performance cores, POWER7 has two memory
controllers––one on each side of the chip. Each memory
controller supports four channels of double-data-rate-three
(DDR3) memory. These eight channels together provide
100 GB/s of sustained memory bandwidth. At the top and
the bottom of the chip are the SMP links, providing 360 GB/s
of coherency bandwidth that allows POWER7 to efficiently
scale to 32 sockets.
In addition to high-performance cores, POWER7 contains

a balanced design, with significant improvements in key
server attributes, such as single-thread (ST) performance,
system throughput performance, system scalability for a wide
spectrum of customer workloads, energy efficiency, and
excellent reliability, availability, and serviceability (RAS).

Single-thread performance is improved with deeper
out-of-order execution, better branch prediction, and
reduced latencies to various resources such as the caches
and translation look-aside buffers (TLBs). In an ST mode,
practically all the core resources can be used by the
single thread.
Core throughput performance is improved by adding

four-way SMT (SMT4), better sharing of core resources
among the threads, and larger resource sizes. This enables
POWER7 to provide increased core performance, compared
with POWER6 with a smaller and more energy-efficient core.
The eight cores on the processor chip can provide

32 concurrently executing threads (8� more than POWER6),
yielding very high throughput per socket. Alternatively,
some cores can be turned off, reallocating energy and cache
to the remaining cores for further improvement in core-level
performance. Each core has its own digital phase-locked
loop, allowing independent frequency control per core to
match workload demands. Furthermore, turning off some
threads within a core allows the core execution resources to
be distributed among the remaining threads, resulting in
better thread-level performance. By turning cores on and off,
turning threads on and off, dynamically varying each core’s
operating frequency, and dynamically partitioning and
reallocating the massive eDRAM cache, POWER7 is capable
of meeting a wide range of rapidly changing operating
requirements in an energy-efficient manner.
At the socket and system levels, advances in cache

hierarchy, memory bandwidth, interconnect technology,
coherence protocol, and significant core and cache power and
area reduction allowed the transition from the two-core
POWER6 chip to the eight-core POWER7 chip while
maintaining the balance of memory and snoop bandwidth

Figure 1

Die photo of the IBM POWER7 chip.

1 : 2 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

per core. POWER processors and systems are well known for
their balance of compute power with bandwidth as these
are crucial in building large systems with high scalability.
The POWER7 design and packaging options allow

POWER7 chips to be used from single-socket blades to
high-end 32 socket servers, to multipetaflops clustered
systems. Currently, the following three packages are being
offered for POWER7 chip:

• A low-end organic package with reduced pin count
bringing out one memory controller and three 5-byte
SMP links to build systems with up to four sockets.

• A high-end ceramic package with two memory
controllers and five 10-byte SMP links to build systems
with up to 32 sockets.

• A compute-intensive package offering 32 cores per
socket with double-width internal buses for HPC
applications.

POWER7 core
Figure 2 shows the processor core floorplan. POWER7
has advanced branch prediction and prefetching capabilities,
as well as deep out-of-order execution capability for
significant ST performance gain. At the same time, it has
sufficient resources to efficiently support four threads per
core. The core can dynamically change mode among ST,
two-way SMT (or SMT2), and SMT4 modes. Figure 3
shows the instruction flow in the processor core.

Several POWER7 optimizations are focused on reducing
core power and area. To reduce power and area, a partitioned
approach to the SMT4 design was incorporated. With this
approach, a pair of threads is supported from one physical
general-purpose register (GPR) file that feeds one fixed-point
unit (FXU) pipeline and one load/store unit (LSU) pipeline,
and another pair of threads is supported from a separate
physical GPR file that feeds a separate FXU pipeline and
LSU pipeline. With this approach, POWER7 can efficiently
rename registers for twice as many threads with a total of
physical GPR file entries that is less than that of POWER5*,
which only supported SMT2.
In earlier out-of-order machines, such as POWER4 and

POWER5, the register rename structure for the GPR,
floating-point register (FPR), and vector register (VR) was
separate, which required a large number of entries.
In POWER7, these were all merged into one unified rename
structure with a total of 80 entries, matching the maximum
number of outstanding nonbranch instructions between
instruction dispatch and completion. This significantly
reduces the area and power of the out-of-order machine.
In addition, in earlier machines, the issue queues for

floating-point instructions and fixed-point (FX) (along
with load and store) instructions were separate. In POWER7,
these have been combined to reduce the area and power.
The new issue queue is called unified issue queue (UQ).
To achieve high frequency, the large UQ is physically
implemented as two 24-entry queues, i.e., UQ0
and UQ1.
The floating-point unit (FPU) and the vector media

extension (VMX) unit were separate in the POWER6 design.
In POWER7, these two units are merged into one unit
called the vector and scalar unit (VSU), which also
incorporates the new vector and scalar extension (VSX)
architecture that allows two-way single-instruction
multiple-data (SIMD) FLOPs out of a 64-entry architected
register file, with 128 bits per entry. POWER7 did not
increase the number of issue ports over POWER6 but still
supports the new VSX instruction sets and can execute
four FX operations and eight FLOPs per cycle.
Both of the Level 1 (L1) instruction and data caches are

highly banked, which allows concurrent read and write
accesses to the cache, whereas an individual bank can only
support either two reads or one write in a given cycle.
This significantly reduces the area and power for the caches,
while most of the time reads and writes (as long as they go
to different banks) can occur concurrently.
Several other microarchitectural improvements were

also made to reduce the core power, such as fine-grained
clock gating and extensive use of high-threshold voltage
transistors, use of a more register-file-based design as
opposed to latch-based design whenever possible, and use
of pointer-based queues instead of shifting queues to reduce
active power.

Figure 2

IBM POWER7 processor core floorplan.

B. SINHAROY ET AL. 1 : 3IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

Each POWER7 chiplet (i.e., a POWER7 core with its
Level 2 (L2) and local L3 cache) is designed to be on a
separate power domain, with asynchronous boundary with
the PowerBus to which it is connected. This allows each
chiplet to have independent voltage and frequency slewing
for advanced power management.
Figure 4 shows how instructions flow to the various issue

queues and are then sent to the functional units for execution.
Which copy of the issue queue, physical register file,
and functional unit will be used by an operation depends
on the multithreading mode of the processor core. In the ST
and SMT2 modes, the two physical copies of the GPR have
identical contents. Instructions from the thread(s) can be
dispatched to either one of the issue queue halves (UQ0 or
UQ1) in these modes. Load balance across the two issue
queue halves is maintained by dispatching alternate
instructions of a given type from a given thread to a UQ half.
In an SMT4 mode, the two copies of the GPR have

different contents. FX and load/store (LS) operations from
threads T0 and T1 can only be placed in UQ0, can only
access GPR0, and can only be issued to FX0 and LS0
pipelines. FX and LS operations from threads T2 and T3 can

only be placed in UQ1, can only access GPR1, and can only
be issued to FX1 and LS1 pipelines.
As shown in Figure 4, most VSU operations can be

dispatched to either UQ0 or UQ1 in all modes (single thread,
SMT2, SMT4), with the following exceptions: 1) VMX
floating point and simple and complex integer operations can
only be dispatched to UQ0; 2) permute (PM), decimal
floating point, and 128-bit store operations can only be
dispatched to UQ1; 3) VSU operations dispatched to UQ0
always execute on vector scalar pipeline 0 (VS0); and
4) VSU operations dispatched to UQ1 always execute
on VS1 pipeline.
The core consists primarily of the following six units:

instruction fetch unit (IFU), instruction-sequencing unit
(ISU), LSU, FXU, VSU, and decimal FPU (DFU). The IFU
contains a 32-KB instruction cache (I-cache), and the LSU
contains a 32-KB data cache (D-cache), which are each
backed up by a tightly integrated 256-KB unified L2 cache.
In a given cycle, the core can fetch up to eight instructions,

decode and dispatch up to six instructions, and issue and
execute up to eight instructions. There are 12 execution
units within the core, i.e., two fixed point, two LS,

Figure 3

IBM POWER7 processor core pipeline flow.

1 : 4 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

four double-precision (DP) floating-point pipelines,
one vector, one branch, one condition register (CR) logical,
and one decimal floating-point (DFP) pipeline. The two LS
pipes have the additional capability to execute simple FX
operations. Each of the four floating-point pipelines is
capable of executing DP multiply–add operations,
accounting for eight FLOPs per cycle per core. The DFU,
which is first introduced in POWER6, accelerates many
commercial applications.
To satisfy the high bandwidth requirement of HPC

workloads, the POWER7 core has twice as much LS
bandwidth capability, compared with previous generations.
While POWER6 can do two 8-byte loads or one 8-byte store
in a given cycle, POWER7 can do two 16-byte loads and
one 16-byte store in a given cycle.
For advanced virtualization capability, POWER7 has a

POWER6 mode and allows dynamic partition mobility
between POWER6 and POWER7 systems. Unlike previous
generation processors, the TLB is not required to be
invalidated in POWER7 on a partition swap. Instead, the
TLB entries can be kept persistent across partition swapping
so that if a partition is swapped back again, some of its
translation entries may be found still in the TLB.
POWER7 allows dynamic SMT mode switches with

low overhead between the ST mode (where T0 is the only
thread running), the SMT2 mode (where T2 and T3

threads are not running), and the SMT4 mode of the
processor core.
In addition, POWER7 implements robust RAS features.

It can detect most soft errors. On soft-error detection,
the core automatically flushes the instructions in the pipeline
and refetches and reexecutes them so that there is no loss
of data integrity. More details are provided in the section
on RAS.

Instruction fetching
The IFU in POWER7 is responsible for feeding the
instruction pipeline with the most likely stream of
instructions, based on a highly accurate branch-prediction
mechanism, from each active thread well ahead of the point
of execution. The IFU is also responsible for maintaining
balance of instruction execution rates from the active threads
based on software-specified thread priorities, decoding
and forming groups of instructions for the rest of the
instruction pipeline, and executing branch instructions.
Figure 5 shows the instruction fetch and decode pipe stages
in POWER7.
The POWER7 core has a dedicated 32-KB four-way

set-associative I-cache. It is a 16-way banked design to avoid
read and write collisions. Late select of the four ways is
predicted using a 64-entry instruction effective address
directory (IEADIR), which provides fast prediction for

Figure 4

IBM POWER7 ISU overview.

B. SINHAROY ET AL. 1 : 5IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

way selection to choose a fetch line from the four ways.
A traditional full I-cache directory (IDIR) is also accessed
in parallel to confirm the set selection prediction in the
next cycle.
Fast address translation is supported by a 64-entry

instruction effective-to-real-address translation (IERAT)
table. The IERAT supports threads 0 and 2 in the first
32 entries and threads 1 and 3 in the bottom 32 entries.
The IERAT directly supports 4 and 64 KB, and larger pages
(64 MB and 16 GB) are supported by dynamically mapping
them into 64-KB pages as needed.
The IFU fetches instructions into the L1 I-cache from

the L2 unified cache. Each fetch request for instructions
from the L2 returns as four sectors of 32 bytes each. These
fetches are either demand fetches that result from L1 I-cache
misses or instruction prefetches. For each demand fetch
request, the prefetch engine initiates up to two additional L2
prefetches for the two sequential cache lines following the
demand fetch. Demand and prefetch requests are made for all
four instruction threads independently, and data may return

in any order, including interleaving of sectors for different
cache lines. Up to four instruction fetch requests can be
outstanding from the core to the L2 cache. Instruction
prefetching is supported in the ST and SMT2 modes only.
Up to two sequential lines are allowed to be prefetched in
the ST mode and one per thread in the SMT2 mode.
When instructions are fetched from the memory

subsystem, two cycles are taken to create predecode bits
and parity for each of the instructions, before the instructions
are written into the L1 I-cache. The predecode bits are
used to scan for taken branches, help group formation,
and denote several exception cases. Branch instructions are
modified in these stages to help generate target addresses
during the branch scan process. The modified branch
instruction, with a partially computed target address, is stored
in the L1 I-cache. Three cycles after the data arrives on
the L2 interface, the 32 bytes are written into the I-cache.
If the requesting thread is waiting for these instructions,
they are bypassed around the cache to be delivered to the
instruction buffers (IBUFs) and the branch scan logic.

Figure 5

IBM POWER7 instruction fetch and decode pipe stages.

1 : 6 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

Instruction fetch address registers (IFARs) track program
counter addresses for each thread. On each cycle, the
IFAR for one of the threads is selected to provide the fetch
address to the I-cache complex and the branch prediction
arrays. The I-cache fetch process reads up to eight
instructions per cycle from the I-cache and writes them into
the IBUFs where they are later formed into dispatch groups.
Thread priority, cache miss pending, IBUF fullness, and
thread balancing metrics are used to determine which
thread is selected for fetching in a given cycle.

Branch prediction
The POWER7 core uses separate mechanisms to predict
the branch direction (i.e., taken versus not-taken prediction
for a conditional branch) and the branch target address.
In the PowerPC architecture, the target address for a typical
branch instruction can be computed from the instruction
image and its address. The target address of a branch-to-link
or branch-to-count instruction is architecturally available in
the link or count register. Since the link or count register
can be updated at any time before the execution of these
instructions, the target address of these branches cannot be
computed ahead of time, and hence, they need to be predicted
to enable instruction fetch to stay well ahead of the point
of execution.
The POWER7 IFU supports a three-cycle branch scan loop

to fetch 32 bytes (or eight instructions) from the instruction
cache, scan the fetched instructions for branches that have
been predicted as taken, compute their target addresses
(or predict the target address for a branch-to-link or
branch-to-count instruction), determine whether any of these
branches (in the path of execution) are unconditional or
predicted as taken, and if so, make the target address of the
first such branch available for next fetch for the thread.
Since it takes three cycles to obtain the next fetch address,

for two of these cycles, there is no fetch for the thread.
However, other active threads can utilize these cycles and
do instruction fetch in the SMT modes. To reduce the loss
of fetch cycles in the ST mode, POWER7 implements a
branch target address cache (BTAC), described later. If the
fetched instructions do not contain any branch that is
unconditional or predicted taken, the next sequential address
is used for the next fetch for that thread and no fetch
cycles are lost.
The direction of a conditional branch is predicted using

a complex of branch history tables (BHTs), consisting of
an 8-K entry local BHT (LBHT) array, a 16-K entry global
BHT (GBHT) array, and an 8-K entry global selection
(GSEL) array. These arrays together provide branch direction
predictions for all the instructions in a fetch group in each
cycle. A fetch group can have up to eight instructions,
all of which can be branches. These arrays are shared by all
active threads. The local array is directly indexed by 10 bits
from the instruction fetch address. The GBHT and GSEL

arrays are indexed by the instruction fetch address hashed
with a 21-bit global history vector (GHV) folded down to
11 bits, one per thread. The value in the GSEL entry is used
to choose between the LBHT and the GBHT for the direction
prediction of each individual branch. All the BHT entries
consist of 2 bits, with the higher order bit determining
direction (taken or not taken) and the lower order bit
providing hysteresis.
Branch target addresses are predicted using the following

two mechanisms: 1) Indirect branches that are not subroutine
returns are predicted using a 128-entry count cache, which
are shared by all active threads. The count cache is indexed
using an address obtained by doing an XOR of 7 bits,
each from the instruction fetch address and the GHV.
Each entry in the count cache contains a 62-bit predicted
address along with two confidence bits. The confidence bits
are used to determine when an entry is replaced if an indirect
branch prediction is incorrect. 2) Subroutine returns are
predicted using a link stack, one per thread. Whenever a
branch-and-link instruction is scanned, the address of the
next instruction is pushed down in the link stack for that
thread. The link stack is Bpopped[whenever a branch-to-link
instruction is scanned. The POWER7 link stack allows
for one speculative entry to be saved in the case where a
branch-and-link instruction is scanned and then flushed due
to a mispredicted branch that appeared earlier in the program
order. In the ST and SMT2 modes, each thread uses a
16-entry link stack. In the SMT4 mode, each thread uses
an eight-entry link stack.
In the ST mode, when a taken branch is encountered,

the three-cycle branch scan causes two dead cycles where
no instruction fetch takes place. To mitigate the penalty
incurred by taken branches, a BTAC was added to track
the targets of direct branches. The BTAC uses the current
fetch address to predict the fetch address two cycles in the
future. When correct, the pipelined BTAC will provide a
seamless stream of fetch addresses that can handle a taken
branch in every cycle.
If the effect of a conditional branch is only to conditionally

skip over a subsequent FX or LS instruction and the branch
is highly unpredictable, POWER7 can often detect such a
branch, remove it from the instruction pipeline, and
conditionally execute the FX or LS instruction. The
conditional branch is converted to an internal Bresolve[
operation, and the subsequent FX or LS instruction is made
dependent on the resolve operation. When the condition is
resolved, depending on the taken or not-taken determination
of the condition, the FX or LS instruction is either
executed or ignored. This may cause a delayed issue of
the FX or LS instruction, but it prevents a potential pipeline
flush due to a mispredicted branch.
Fetched instructions go to the branch scan logic and to

the IBUFs. An IBUF can hold up to 20 entries, each four
instructions wide. In the SMT4 mode, each thread can have

B. SINHAROY ET AL. 1 : 7IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

five entries, whereas, in ST and SMT2 modes, a thread can
have ten entries. Special thread priority logic selects one
thread per cycle for group formation. Groups are formed by
reading a maximum of four nonbranches and two branches
from the IBUF of the thread. Unlike the POWER4 and
POWER5 processors, branches do not end groups in
POWER7.
After group formation, the instructions are either decoded

or routed to special microcode hardware that breaks complex
instructions into a series of simple internal operations.
Microcode handling continues until the architected
instruction is fully emulated. The decode and dispatch
section of the IFU also handles illegal special-purpose
register (SPR) detection, creation of execution route bits,
and marking of instructions for debugging and performance
monitoring purposes.

Instruction sequencing unit
The ISU, shown in Figure 4, dispatches instructions, renames
registers, issues instructions, completes instructions, and
handles exception conditions.
The POWER7 processor dispatches instructions on a

group basis and can dispatch a group from one thread at a
time to the ISU. All resources such as the renames and
various queue entries must be available for the instructions in
a group before the group can be dispatched. Otherwise, the
group will be held at the dispatch stage. An instruction group
to be dispatched can have at most two branch instructions
and four nonbranch instructions from the same thread.
If there is a second branch, it will be the last instruction in
the group.
Register renaming is done using the mapper logic

(see Figure 4) before the instructions are placed in the issue
queues. The following registers are renamed in POWER7:
GPR, vector and scalar register (VSR), exception register
(XER), CR, floating-point status and control register
(FPSCR), link, and count. The GPR and VSR share a pool of
80 rename entries. The CRs are mapped
onto 56 physical registers. The XERs are mapped onto
40 physical registers, and one nonrenamed register. The Link
and Count registers are mapped onto 24 physical registers.
The FPSCR is renamed using a 20-entry buffer to keep
the state of the FPSCR associated with each group of
instructions. Each of the aforementioned resources has a
separate rename pool that can be independently accessed and
shared by all active threads. Instructions that update more
than one destination register are broken into subinstructions.
The ISU also assigns a load tag (LTAG) and a store tag

(STAG) to manage load and store instruction flow. The
LTAG corresponds to a pointer to the load-reorder-queue
(LRQ) entry assigned to a load instruction. The STAG
corresponds to a pointer to the store-reorder-queue (SRQ)
entry assigned to a store instruction. This is also used to
match the store data instruction with the store address

instruction in the SRQ. A virtual STAG/LTAG scheme is
used to minimize dispatch holds due to running out of
physical SRQ/LRQ entries. When a physical entry in the
LRQ is freed, a virtual LTAG will be converted to become
a Breal[LTAG. When a physical entry in the SRQ is freed, a
virtual STAG will be converted to become a Breal[STAG.
Virtual STAGs or LTAGs are not issued to the LSU until
they are subsequently marked as being Breal[in the issue
queue. The ISU can assign up to 63 LTAGs and 63 STAGs
to each thread.
POWER7 employs three separate issue queues: a 48-entry

UQ, a 12-entry branch issue queue (BRQ), and an 8-entry
CR queue (CRQ). Dispatched instructions are saved in the
issue queues and then issued to the execution unit one cycle
after dispatch at the earliest for the BRQ or CRQ and two
cycles after dispatch at the earliest for the UQ. The BRQ and
CRQ are shifting queues, where dispatched instructions are
placed at the top of the queue and then trickle downward
toward the bottom of the queue. To save power, the UQ is
implemented as a nonshifting queue and managed by queue
position pointers. The queue position pointers are shifted,
but the UQ entries are not shifted, which significantly
reduces the switching power in the large UQ. Instructions
can issue in order or out of order from all of these queues,
with higher priority given to the older ready instructions
for maximizing performance. An instruction in the issue
queue is selected for issuing when all source operands for
that instruction are available. In addition, the STAG and the
LTAG must have Breal entries[for a load or store instruction
before it can be issued. For the BRQ and CRQ, instruction
dependences are checked by comparing the destination
physical pointer of the renamed resource against all
outstanding source physical pointers. For the UQ,
dependences are tracked using queue pointers via a
dependence matrix. The issue queues together can issue a
total of eight instructions per cycle, i.e., one branch, one CR
logical, two FX instructions to the FXU, two LS or two
simple FX instructions to the LSU, and two vector–scalar
instructions to the VSU.
The BRQ contains only branch instructions, and it receives

two branches per cycle from the dispatch stage and can issue
one branch instruction per cycle for execution to the IFU.
The CRQ contains the CR logical instructions and moves
from SPR instructions, for the IFU, the ISU, and the
pervasive control unit. The CRQ can receive two instructions
per cycle and can issue one instruction per cycle to the IFU.
The UQ is implemented as a 48-entry queue that is split

into two halves of 24 entries each. It contains all instructions
that are executed by the FXU, LSU, VSU, or DFUs. The top
half of the queue contains instructions for FX0, LS0, and
VS0 pipelines including VMX integer instructions. The
bottom half of the queue contains instructions for FX1, LS1,
and VS1 pipelines including DFP, VMX PM, and the VSU
128-bit store instructions. Appropriate instructions are

1 : 8 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

steered at the dispatch stage to the appropriate half of the UQ.
The UQ can receive up to four instructions per cycle per UQ
half. The 64-bit VSU store instructions are split into an
address generation (AGEN) operation and a data steering
operation during instruction dispatch, and a total of eight
such operations can be written into UQ in a given cycle.
The relative age of the instructions in the UQ is determined

by an age matrix since the UQ is a nonshifting queue,
which is written at dispatch time. Each half of the UQ can
issue one FX, one LS, and one VS instruction per cycle for
a total of six instructions per cycle. Speculative issues can
occur, for example, when an FX operation dependent on a
load operation is issued before it is known that the load
misses the D-cache or the data effective-to-real-address
translation (D-ERAT). On a misspeculation, the instruction
is rejected and reissued a few cycles later. Simple FX
instructions may be selected for issue to the LSU for
improved FX throughput, with the same latency as a load
operation from L1 D-cache.
The ISU is responsible to track and complete instructions.

POWER7 employs a global completion table (GCT) to
track all in-flight instructions after dispatch. Instructions in
the core are tracked as groups of instructions and, thus, will
dispatch and complete as a group. The GCT has 20 entries,
which are dynamically shared by all active threads. Each
GCT entry corresponds to a group of instructions, with up to
four nonbranch and up to two branch instructions. This
allows the GCT to track a maximum of 120 in-flight
instructions after dispatch. Each GCT entry contains finish
bits for each instruction in the group. At dispatch, the finish
bits are set to reflect the valid instructions. Instructions are
issued out of order and speculatively executed. When an
instruction has successfully executed (without a reject), it is
marked as Bfinished.[When all the instructions in a group
are marked Bfinished,[and the group is the oldest for a given
thread, the group can Bcomplete.[When a group completes,
the results of all its instructions are made architecturally
visible, and the resources held by its instructions are released.
The POWER7 core can complete one group per thread
pair (threads 0 and 2 form one pair, whereas threads 1 and
3 form the other pair) per cycle, for a maximum total of
two group completions per cycle. When a group is
completed, a completion group tag (GTAG) is broadcasted
so that resources associated with the completing group can be
released and reused by new instructions.
Flush generation for the core is handled by the ISU.

There are many reasons to flush out speculative instructions
from the instruction pipeline such as branch misprediction,
LS out-of-order execution hazard detection, execution of a
context synchronizing instruction, and exception conditions.
The completion unit combines flushes for all groups to be
discarded into a 20-bit mask, i.e., 1 bit for each group.
The completion unit also sends out the GTAG for
partial-group flushes, which occurs when the first branch is

not the last instruction in the group, and it mispredicts,
causing a need to flush all subsequent instructions from the
thread. A 4-bit slot mask accompanies the partial flush
GTAG to point out which instructions in the group need to be
partially flushed. All operations related to the canceled
groups are discarded.

Data fetching
Data fetching is performed by the LSU, which contains two
symmetric LS execution pipelines (LS0 and LS1), each
capable to execute a load or a store operation in a cycle.
Figure 6 shows the microarchitecture for an LSU pipeline,

which contains several subunits, i.e., LS AGEN and
execution, SRQ and store data queue (SDQ), LRQ, load
miss queue (LMQ), address translation mechanism, which
includes the D-ERAT, ERAT miss queue, segment lookaside
buffer (SLB) and TLB, and the L1 D-cache array with its
supporting set predict and data directory (DDIR) arrays,
and the data prefetch request queue (PRQ) engine.

LS execution
In the ST and SMT2 modes, a given LS instruction can
execute in either pipeline. In the SMT4 mode, instructions
from threads 0 and 1 execute in pipeline 0, whereas
instructions from threads 2 and 3 execute in pipeline 1.
Instructions are issued to the LSU out of order, with a bias

toward the oldest operations first. Stores are issued twice;
an AGEN operation is issued to the LSU, whereas a data
steering operation is issued to the FXU or the VSU.
Main dataflow buses into and out of the LSU include

32-byte reload data from the L2 cache and 16-byte store data
to the L2 cache, 16-byte load data per execution pipeline to
the VSU (with a tap off of 8-byte load data per execution
pipeline to the FXU), one 16-byte store data from the VSU
and 8-byte store data per execution pipeline from the FXU.
POWER7 L1 D-cache size is 32 KB, which resulted in a

reduction in the D-cache access latency. FX loads have a
two-cycle load-to-use latency, that is, only one cycle of
Bbubble[(which is a cycle in the pipeline during which no
useful work is done) is introduced between a load and a
dependent FXU operation. The VSU loads have a three-cycle
load-to-use latency, that is, two cycles of bubbles are
introduced between a load and a dependent VSU operation.
Each LSU pipeline can also execute FX add and logical

instructions, allowing more FX execution capability for the
POWER7 core and greater flexibility to the ISU in the
issuing of instructions.

LS ordering
The LSU must ensure the effect of architectural program
order of execution of the load and store instructions, although
the instructions can be issued and executed out of order.
To achieve that, LSU employs two main queues: the SRQ
and the LRQ.

B. SINHAROY ET AL. 1 : 9IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

The SRQ is a 32-entry real-address-based
content-addressable memory (CAM) structure. Each
thread has 64 virtual entries that are available, allowing
64 outstanding stores to be dispatched per thread. A total of
32 outstanding stores may be issued since a real physical
SRQ entry is required for the store to be issued. The SRQ
is dynamically shared among the active threads. An SRQ
entry is allocated at issue time and deallocated after the
completion point when the store is written to the L1 D-cache
or sent to the L2 cache. For each SRQ entry, there is a
corresponding SDQ entry of 16 bytes. Up to 16 bytes of
data for a store instruction can be sent to the L2 cache
(and also written to the L1 D-cache on a hit) in every
processor cycle. Store forwarding is supported, where data
from an SRQ entry is forwarded to an inclusive subsequent
load, even if the store and load instructions are speculative.
Like the SRQ, the LRQ is a 32-entry real-address-based

CAM structure. Sixty-four virtual entries per thread are

available to allow a total of 64 outstanding loads to be
dispatched per thread. A total of 32 outstanding loads may
be issued since a real physical LRQ entry is required for the
load to be issued. The LRQ is dynamically shared among
the threads. The LRQ keeps track of out-of-order loads,
watching for hazards. Hazards generally exist when a
younger load instruction executes out of order before an older
load or store instruction to the same address (in part or in
whole). When such a hazard is detected, if specific conditions
exist, the LRQ initiates a flush of the younger load instruction
and all its subsequent instructions from the thread, without
having an impact on the instructions from other threads.
The load is then refetched from the I-cache and reexecuted,
ensuring proper LS ordering.

Address translation
In the PowerPC architecture, programs are written using
64-bit effective addresses (EAs) (32-bit in 32-bit addressing

Figure 6

LSU microarchitecture (LS0 pipe shown).

1 : 10 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

mode). During program execution, the EAs are translated
by the first level translation into 46-bit real addresses
that are used for all addressing in the cache and memory
subsystem. The first level translation consists of two 64-entry
D-ERAT cache and a 64-entry IERAT. In case of a miss
in the ERAT cache (data or instruction), the second level
translation is invoked to generate the translation. The second
level translation consists of a 32-entry-per-thread SLB
and a 512-entry TLB that is shared by all active threads.
Effective addresses are first translated into 68-bit virtual

addresses using the segment table, and the 68-bit virtual
addresses are then translated into 46-bit real addresses
using the page frame table. While segment table and
page frame tables are large and reside in main memory,
a 32-entry-per-thread SLB is maintained to keep entries from
the segment table to translate from effective to virtual
address, and a 512-entry TLB is maintained to keep the
recently used entries from the page frame table to translate
from virtual to real addresses. POWER7 supports two
segment sizes, i.e., 256 MB and 1 TB, and four page sizes,
i.e., 4 KB, 64 KB, 16 MB, and 16 GB.
The D-ERAT is a 64-entry fully associative CAM-based

cache. Physically, there are two identical copies of the
D-ERAT, associated with the two LSU pipelines. In the
ST and SMT2 modes, since instructions from the thread(s)
can go to either LS0 or LS1 pipeline, the two copies of the
D-ERAT are kept in sync with identical contents. Therefore,
in the ST and SMT2 modes, logically, there are a total of
64 entries available. In the SMT2 mode, the entries are
dynamically shared between the two threads. In the SMT4
mode, since the two LSU pipelines are split between the
two thread pairs, the two physical copies of the D-ERAT
have different contents, i.e., threads 0 and 1 dynamically
share one physical 64-entry D-ERAT (associated with LS0
pipe), and threads 2 and 3 dynamically share the other
physical 64-entry D-ERAT (associated with LS1 pipe), for a
total of 128 logical entries. Each D-ERAT entry translates
4-KB, 64-KB, or 16-MB pages. Pages of 16 GB are installed
as multiple 16-MB pages. The D-ERAT employs a binary
tree least recently used (LRU) replacement policy.
The SLB is a 32-entry-per-thread fully associative

CAM-based buffer. Each SLB entry can support 256 MB
or 1 TB segment sizes. The multiple pages per segment
(MPSS) extension of PowerPC architecture is supported
in POWER7. With MPSS, a segment with a base page size
of 4 KB can have 4-KB, 64-KB, and 16-MB pages to be
concurrently present in the segment. For a segment base page
size of 64 KB, the segment can have 64-KB and 16-MB
pages concurrently. The SLB is managed by the operating
system, with the processor generating a data or instruction
segment interrupt when an SLB entry needed for translation
is not found.
The TLB is a 512-entry four-way set-associative buffer.

The TLB is managed by hardware and employs a true LRU

replacement policy. There can be up to two concurrent
outstanding table-walks for TLB misses. The TLB also
provides a hit-under-miss function, where the TLB can
be accessed, and it returns translation information to the
D-ERAT, while a table-walk is in progress. In POWER7,
each TLB entry is tagged with the logical partition (LPAR)
identity. For a TLB hit, the LPAR identity of the TLB
entry must match the LPAR identity of the active partition
running on the core. When a partition is swapped in, unlike
POWER6, there is no need to explicitly invalidate the
TLB entries. If the partition has previously run on the same
core, there is a chance that some of its TLB entries are
still available, which reduces TLB misses and improves
performance.

L1 data cache organization
POWER7 contains a dedicated 32-KB eight-way
set-associative banked L1 D-cache. The cache line size is
128 bytes consisting of four sectors of 32 bytes each. There
is a dedicated 32-byte reload data interface from the L2
cache, which can supply 32 bytes of data in every processor
cycle. The cache line is validated on a sector basis as each
32-byte sector is returned from memory subsystem. Loads
can hit against a valid sector before the entire cache line is
validated.
The L1 D-cache has three ports––two read ports

(for two load instructions) and one write port (for a store
instruction or a cache line reload). A write has higher priority
over a read, and a write for a cache line reload has higher
priority than a write for a completed store instruction.
The L1 D-cache consists of four physical macros

organized by data bytes, each macro partitioned into
16 banks based on the EA bits, for a total of 64 banks.
The cache banking allows for one write and two reads to
occur in the same cycle, as long as the reads are not to
the same bank(s) as the write. If a read has a bank conflict
with a write, the load instruction is rejected and reissued.
A 32-byte cache line reload spans eight banks, whereas a
completed store instruction spans from one to four banks,
depending on data length.
The L1 D-cache is a store-through design; all stores are

sent to the L2 cache, and no L1 cast-outs are required.
The L1 D-cache is not allocated on a store miss; the store
is just sent to the L2 cache. The L1 D-cache is inclusive
of the L2 cache. The L1 D-cache has byte-write capability of
up to 16 bytes within a given 32-byte sector in support of
store instructions.
The L1 D-cache is indexed with the EA bits. The L1

D-cache directory employs a binary tree LRU replacement
policy. Being 32 KB and eight-way set-associative results
in 4 KB per set, requiring up to EA bit 52 to be used to
index into the L1 D-cache. A set predict array is used to
reduce the L1 D-cache load hit latency. The set predict
array is based on EA and is used as a minidirectory to select

B. SINHAROY ET AL. 1 : 11IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

which one of the eight L1 D-cache sets contains the load
data. The set predict array is organized as the L1 D-cache:
indexed with EA(52:56) and eight-way set-associative.
Each entry contains 11 hash bits obtained from hashing bits
EA(33:51), valid bits per thread, and a parity bit.
When a load executes, the generated EA(52:56) is used

to index into the set predict array, and EA(33:51) is hashed
and compared with the contents of the eight sets of the
indexed entry. When an EA hash match occurs and the
appropriate thread valid bit is active, the match signal is used
as the set select for the L1 D-cache data. If there is no EA
hash match, it indicates a cache miss. However, an EA hash
match does not necessarily mean a cache hit. For cache hit
determination, the EA is used to look up in the L1 data cache
directory for the real address and then compare this real
address with the real address obtained from the ERAT for the
given EA.
When a cache line is validated, the default is to enter

in a shared mode where all thread valid bits for the line
are set. A nonshared mode is dynamically entered on an
entry-by-entry basis to allow only one thread valid bit to be
active. This is beneficial to avoid thrashing among the
threads, allowing the same EA hash to exist for each thread at
the same time.

Load miss handling
Loads that miss the L1 D-cache initiate a cache line reload
request to the L2 cache, release the issue queue entry,
and create an entry in the LMQ to track the loading of the
cache line into the L1 D-cache and also to support the
forwarding of the load data to the destination register.
When the load data returns from the L2 cache, it gets higher
priority in the LSU pipeline, and the data is transferred to the
destination register. The LMQ is real address based and
consists of eight entries, dynamically shared among the
active threads. The LMQ tracks all cache line misses
that result in reload data to the L1 D-cache, which also
includes data prefetch requests and data touch instructions, in
addition to load instructions. The LMQ supports load
merging, where up to two load instructions (of the same
or different threads) can be associated with a given LMQ
entry and cache line reload request. The LMQ can support
multiple misses (up to eight) to a given L1 D-cache
congruence class.

Fixed-point unit
The FXU comprises of two identical pipelines (FX0 and
FX1). As shown in Figure 7, each FXU pipeline consists of a
multiport GPR file; an arithmetic and logic unit (ALU) to
execute add, subtract, compare, and trap instructions;
a rotator to execute rotate, shift, and select instructions;
a count (CNT) leading zeros unit; a bit-select unit (BSU)
to execute bit PM instruction; a divider (DIV); a multiplier
(MULT); and a miscellaneous execution unit (MXU) to

execute population count, parity, and binary-coded decimal
assist instructions. All SPRs that are local to the FXU
pipeline are stored in SPR. Certain resources such as the FX
XER file are shared between the two pipelines.
The most frequent FX instructions are executed in one

cycle, and dependent operations may issue back to back to
the same pipeline, if they are dispatched to the same UQ half
(otherwise, one cycle bubble is introduced). Other
instructions may take two, four, or a variable number of cycles.
At the heart of each FXU pipeline is a GPR file with

112 entries, which holds the architected registers and the
renamed registers for up to two threads. The GPR has
four read ports, two supplying operands for the FX pipeline,
and two supplying AGEN operands to the attached LSU
pipeline. Two physical write ports are clocked twice per
cycle (double-pumped), giving four logical write ports,
two capturing results from the two FX pipelines, and the
other two from the two data cache read ports in the LSU.
Double pumping the write ports reduces power consumption
and the size of the GPR macro, which is important for
shortening the length of critical wires that must traverse it.
Contents of the two GPR files in each pipeline are

managed by the ISU to be identical in the ST and SMT2
modes but distinct in the SMT4 mode. That is, in the
SMT4 mode, the GPR in one pipeline contains the
architected and renamed registers for one pair of threads,
whereas the GPR in the other pipeline contains the registers
for the other pair of threads.
The POWER7 FXU implements a fully pipelined

64 bit � 64 bit signed/unsigned MULT with a four-cycle
latency and a throughput of one 64 bit product per cycle.
Since the MULT is pipelined, instructions can be issued
to the FXU under a multiply operation, except when there is
a result bus hazard. This level of performance is a significant
improvement over preceding processors and provides
considerable speedup to multiply intensive codes such as
cryptographic applications. The MULT is a full custom
design using Radix-4 Modified Booth Encoding and Wallace
tree for partial product reduction constructed with 4 : 2
compressors. This level of MULT performance together with
the extended division support added to the DIV greatly
improves the performance of multiprecision arithmetic
operations relative to previous POWER processors.
The latency between a compare instruction and a

dependent branch instruction is often a significant
performance detractor for many workloads. To reduce
this latency, each FXU pipeline has a fast compare custom
macro that calculates the condition code from a compare
instruction faster than the ALU, resulting in a back-to-back
issue in most cases for a compare, followed by a branch
instruction.
To address the performance needs of several important

applications, new bit-oriented FX arithmetic instructions
were added to the instruction set architecture, including

1 : 12 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

64- and dual 32-bit population count and bit PM. The
POWER7 FXU adds specialized execution units to process
these at a throughput of one operation per cycle per pipeline
with two cycle latency. A custom bit PM unit multiplexes
any 8 bits from a 64-bit source register into the low-order
byte of a target register. With eight such instructions and a
few others to merge the result, an arbitrary permutation of a
64-bit register may be computed. In the MXU, an adder tree
comprising 4 : 2 and 3 : 2 compressors computes population
count on either one 64-bit, two 32-bit, or eight 8-bit
quantities in two cycles, with one operation per cycle
throughput, due to pipelining.

Vector and scalar instruction execution
The POWER7 VSU implements the new VSX architecture
introducing 64 architected registers. With dual issue of
two-way SIMD floating-point DP instructions, the
performance in FLOPs per cycle per core is doubled in
comparison to POWER6. In addition, the VSU of the

POWER7 processor merges the previously separate VMX
unit [5] and binary FPU (BFU) [4] into a single unit for area
and power reduction. Furthermore, the POWER6 DFU is
attached to the VSU as a separate unit, sharing the issue
port with the VS1 pipeline.
The VSU supports the following instruction types:

1) VMX/VSX PM; 2) VMX simple integer (XS); 3) VMX
complex integer (XC); 4) VMX/VSX four-way vector
single precision; 5) VSX two-way SIMD vector DP; and
6) scalar binary floating point. The VSU supports dual
instruction issue, where VS0 pipe supports the instruction
types 2–6, and VS1 pipe supports instruction types 1, 5, and 6.
The VSU implements a total of four floating-point

pipelines to support the dual issue of VSX two-way SIMD
vector DP floating-point instructions. Each floating-point
pipeline in the VSU can execute either a 32-bit slice of
types 3 and 4 or a 64-bit slice of types 5 and 6. All four
floating-point pipelines are therefore needed to execute
instructions of types 3 and 4 on pipe 0, but two instructions

Figure 7

IBM POWER7 FXU overview (FX0 pipe shown).

B. SINHAROY ET AL. 1 : 13IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

of types 5 and 6 can be simultaneously executed on both
pipes using pairs of floating-point pipelines.
The new VSX instruction set architecture requires

that all VSX floating point computations and other data
manipulations are performed on the data residing in
64 architected 128-bit-long VSRs. This new 64-entry VSR
does not increase the overall namespace of the architected
registers in the core, since the existing 32 FPRs and the
32 VMX registers are mapped onto this new 64 VSRs.
The mapping is shown in detail in Figure 8. The 32 64-bit
FPRs (used for both binary and decimal FLOPs) are mapped
onto bits 0 to 63 of the VSR entries 0 through 31. The
32 128-bit VRs of the VMX facility are mapped onto bits 0
to 127 of the VSR entries 32 through 63. With this mapping,
the new set of VSX instructions can access all 64 registers
and enable direct data exchange and data manipulations
between original FPR and VMX registers.
The VSR-architected registers are physically implemented

by the VSR file in the VSU. All entries in the VSR are
128 bit wide. In the physical implementation, the VSR has

172 entries, each 128 cell wide, with each cell containing
2 bits. The VSR can store 64 architected 128-bit-wide
registers for all active threads (up to four), along with all
of the renamed VSRs. In addition to dual bits, each VSR cell
also has a multiplexer for each read port for selecting the
read from the odd or even bits based on the thread identity.
In the ST mode, only a single bit is in use by each cell.
In the SMT2 mode, bit 0 stores thread 0 data, and bit 1 stores
thread 1 data. In the SMT4 mode, threads 0 and 2 are
fixed allocated to bit 0 of the dual bit cell, and threads 1 and 3
are fixed allocated to bit 1 of the dual bit cells. With
172 entries of double bit cells, in the SMT4 mode, each
thread pair with its two times 64 architected registers still
has 44 renames available, with a maximum of 80 renames
among both thread pairs as the maximum supported
by the ISU. The dual issue of instructions with three
128-bit-wide input operands for each instruction, two
128-bit-wide results buses and two 128-bit-wide load
buses requires a VSR with six read and four write ports,
as shown in Figure 9.

Figure 8

FPRs and VMX VRs as part of the new VSRs.

1 : 14 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

The VSU pipeline shown in Figure 9 has the following
logical execution components: 1) the XS; 2) the XC;
3) the vector PM; and 4) the floating-point pipelines that
execute the scalar binary floating point, the vector single
precision floating point, and the vector DP floating point.
All VSU execution pipes are fully pipelined.
The XS is responsible for the vector simple FX calculations.

The basic structure of XS is the same as in POWER6 [4], but
the implementation has been optimized to reduce the pipeline
length from three to two cycles. The vector select (VSEL)
instruction is no longer part of the XS and is now part of the
vector PM on pipe 1 to enable the execution of VSEL
instructions in parallel with the FX instructions on pipe 0.
The PM performs permutation as well as rotates and

shifts by bytes and bits on a 32-byte vector, as given by
2� a 16-byte input operand. The PM unit is the only unit
requiring a local 128-bit-wide dataflow as all other units
can be partitioned into 4� a 32-bit or 2� a 64-bit dataflow.
A new implementation structure for PM enabled the PM
overall latency to be reduced from four to three cycles in
comparison with the POWER6.

To double the FLOPs per cycle in comparison with the
POWER6 processor core, four fused multiply–add binary
floating-point DP pipelines have been implemented in the
VSU. The fast six-cycle result forwarding capability within a
floating-point pipeline and between floating-point pipelines
are maintained, as in previous POWER processors. The
same floating-point pipelines are used to execute the newly
introduced VSX vector DP floating-point instructions,
the original binary scalar floating-point instructions as well
as the original VMX single-precision vector floating-point
(VF) and VMX complex integer (XC), for SIMD integer
multiply, multiply–add, multiply–sum and sum–across.
For the VF and XC implementation, all four 64-bit
floating-point pipelines are used, but they operate on half
the data width as needed for the four times 32-bit operation
that make up the 128-bit-wide result. The issue of an
instruction on VS0 that uses all four floating-point pipelines
by the VF, XC, and VSX vector single precision instructions
implies that no instruction can be issued at VS1 in the
same cycle that uses the any floating-point pipeline. The XS
and the VF have a five-cycle difference in latency but share

Figure 9

VSU pipeline diagram. (DPFP: double-precision floating point.)

B. SINHAROY ET AL. 1 : 15IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

the result write-back bus. The ISU prevents an XS instruction
from being issued five cycles after the issue of a VF
instruction on the VS0 pipeline to avoid result bus conflict.
The POWER7 VSU floating-point pipeline replaces two

BFUs, VMX VF, and the VMX XC logic in the POWER6
by a single common dataflow. The execution of all these
different types of instructions on a single floating-point
dataflow resulted in a significant area and power reduction. In
POWER7, different data formats are used by different types
of instructions, increasing the complexity at the front and
back ends of the floating-point pipeline. A complete redesign
of the floating-point pipeline balanced the logic contents of
each stage and significantly reduced the overall area and
power for the floating-point pipeline, compared with
previous FPU designs.
Another complexity of merging the VMX and BFU

(and newly introduced VSX) is the VSU-level bypassing of
the execution results with different data widths and formats
to the operand latches. Despite all the complexities of the
different bypass cases, the bypassing logic is designed in a
way such that a given instruction has a uniform issue-to-issue
latency to all other units, irrespective of the dependent
instruction. The only exception is the fast forwarding path of
the floating-point pipelines. It takes six cycles to forward
floating-point results to any other floating-point pipeline,
but it takes seven cycles if the dependent instruction is not
a floating-point pipeline. The VSU instruction execution
latencies are two cycles for the XS, three cycles for the PM,
six cycles for floating-point fast forwarding, and seven cycles
for the XC. Finally, three cycles after the issue of a load
with a L1 D-cache hit, a dependent VSU instruction can be
issued. With this bypassing capability and the ability to do
two 128-bit loads in parallel with the dual issue of VSX
instructions (such as fused multiply–add), the VSU is well
balanced for HPC and for vector computing for commercial
applications.

Cache hierarchy
The cache hierarchy for POWER7 has been reoptimized
with regard to the prior generation POWER6 processor

in order to suit the following changes in the core and
at the chip:

1. Repipelining of the core from high-frequency design
to the power/performance optimized design point.

2. Change from a primarily in-order to a primarily
out-of-order instruction scheduling policy.

3. Growth from two to four threads per core.
4. Reduction in L1 D-cache size from 64 to 32 KB along

with reduction in L1 cache access time.
5. Growth from two cores to eight cores per die.

As shown in Table 1,1 the 64-KB L1 D-cache and
4-MB L2 cache in the POWER6 processor have been
replaced by a 32-KB L1 D-cache, a 256-KB L2 cache,
and a 4-MB local L3 region in the POWER7 processor,
essentially utilizing three layers where two had been used
before [4].
This was possible because the slower POWER7 instruction

pipeline and the out-of-order scheduling policy enable
reduced access latencies to both the L1 D-cache and L2
cache, provided by corequisite reductions in capacity
commensurate with the desired latencies.
The POWER7 cache microarchitects have exploited this

opportunity to provide a substantial L2 cache latency
reduction by reducing the capacity from 4 MB to 256 KB.
Given the L2 cache’s role in absorbing the store-through
traffic from the highly threaded high-performance core,
this reduction in capacity enables a corresponding reduction
in the energy usage driven by the high traffic rate. Therefore,
the introduction of this intermediate cache layer provides
both a latency reduction and an energy reduction.
The traffic reduction provided by the 256-KB L2 cache

further affords the opportunity to optimally utilize IBM’s
high-density low-power on-processor-chip eDRAM
technology for the next level of cache. Developed for this
express purpose, it has been exploited by the POWER7

Table 1 Comparison of POWER6 and POWER7 cache hierarchies.

1Both POWER6 and POWER7 systems have a wide range of product offerings at different
processor core frequencies. The frequencies used in the table are for the purpose of illustration.

1 : 16 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

cache microarchitects to create a low-latency 4-MB local L3
region, tightly coupled to the private L2 associated with
each core. Each storage element in the local L3 region
requires only one transistor, instead of the six transistors
required by conventional dense SRAM technologies. The
resulting area and energy reductions are a primary factor
enabling the incorporation of eight cores into a single,
balanced, processor chip.
The POWER6 cache hierarchy includes a shared 32-MB

L3 cache, which is built from a prior eDRAM technology
that requires it to be located on one or two chips that are
attached to the processor chip. Given the bandwidth required
to satisfy each core, using an off-chip cache shared by the
eight cores on a POWER7 chip would have required a
prohibitive number of off-chip signaling resources.
Therefore, the POWER7 cache hierarchy includes a shared
32-MB L3 cache comprised of the 4-MB local L3 regions
from the eight cores that reside on the processor chip.
This enables the signaling resources that would have been
used for communication with an off-chip L3 cache to be
redeployed for other purposes, such as the memory and I/O
subsystem interfaces.
The adaptive L3 cache management policy routes

instructions and data to the 4-MB local L3 regions of the core

or cores that most actively utilize them, enabling them to
experience reduced latency, even cloning copies when
multiple cores are actively sharing them but also destroying
copies as they fall into disuse in order to preserve capacity.
Since the POWER7 32-MB L3 cache resides on the
processor chip, it provides lower latency access (even to
28 MB composed of nonlocal L3 regions) than the POWER6
off-chip 32-MB L3 cache.
As shown in Table 2, the POWER7 L2 and L3 caches

support the same 13-cache-state protocol as the POWER6
design point [4]. While no new cache states have been added
for POWER7, new coherent operations are supported.
One such operation is cache injection. An I/O device
performing a direct memory access (DMA) write operation
may target the operation to the cache, instead of to memory.
If a given core’s L2 cache or local L3 region owns a copy
of the targeted cache line (i.e., holds the line in an M, ME,
MU, T, TE, TN, or TEN cache state), the data will be
installed into the local L3 region. Additionally, new
heuristics have been developed, which further exploit the
semantic content reflected by the existing cache states.
One of these, which is called the partial victim cache
management policy, reduces energy usage as data moves
between a given L2 cache and its associated local L3

Table 2 IBM POWER7 cache states.

B. SINHAROY ET AL. 1 : 17IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

region. This feature is further described in the L2 cache
section.
Another such enhancement involves the L3 cache

management policy. While the POWER7 L2 replacement
policy is similar to the POWER6 policy, employing an
enhanced pseudo-LRU replacement algorithm, with biasing
toward various invalid locations, the POWER7 L3
replacement policy incorporates significant enhancements
and exploits the semantic content of the 13 cache states to
manage the aggregation of the 4-MB regions. This feature
is described in further detail in the L3 cache section.
Finally, the barrier synchronization register (BSR)

facility originally implemented in POWER5 and POWER6
processors has been virtualized in the POWER7 processor
[2]. Within each system, multiple megabytes of main storage
may be classified as BSR storage and assigned to tasks by
the virtual memory manager. The BSR facility enables
low-latency synchronization for parallel tasks. Writes to BSR
storage are instantaneously broadcast to all readers, allowing
a designated master thread to orchestrate the activities of
workers threads in a low-latency fine-grained fashion. This
capability is particularly valuable for improving parallel
speedups in certain HPC environments.

L2 cache
The private 256-KB POWER7 L2 cache utilizes 128 byte
lines and is eight-way set associative. It is comprised of a
single centralized controller, with two address-hashed cache
data arrays. Some of the structures in the L2 cache operate
at core frequency, while others operate at half of the core
frequency. Hereafter, the terms core cycle and 2 : 1 cycle
will be used to distinguish between them. The interfaces into
the core, the data flows, and the cache directory SRAM cells
operate at the core frequency, whereas the address flows,
control logic, and cache data array SRAM operate at half
of the core frequency. This unique blend of core-cycle
structures and 2 : 1 cycle structures optimizes coherence and
data bandwidth as well as latency while reducing energy,
area, and wiring congestion.
Utilizing a dual-port-read core-cycle directory SRAM

enables the coherence dispatch logic to process one even
cache line 128-byte snoop, one odd cache line 128-byte
snoop, and one 128-byte core operation or one directory
write operation every 2 : 1 cycle. Up to 64 byte may be read
from or written to each of the two cache data arrays every
2 : 1 cycle. Therefore, the following 128-byte operations
all utilize a given cache data array for two 2 : 1 cycles:
1) core fetches; 2) cast-out reads; 3) snoop intervention
reads, and 4) write-backs of miss data, as well as
read–modify–write operations (performed on behalf of
accumulated core stores) that affect more than 64-byte
aligned values. A single centralized scheduler manages
coherence dispatches, directory writes, cache data reads,
and cache data writes.

To reduce latency for sensitive core fetch operations
(e.g., L1 D-cache misses and L1 instruction cache misses)
and to reduce resource usage for core store operations,
core fetch operations and the read portions of
read–modify–write operations access the cache data arrays
speculatively. However, energy usage is minimized by
either canceling the second 2 : 1 cycle of a two-cycle access
in the case of a cache miss or targeting the cache read to a
subset of the set-associative members during the second 2 : 1
cycle of a two-cycle access in the case of a cache hit. Energy
usage is further reduced in the case of read–modify–write
operations as follows: Only the 8-byte double words that
will be partially updated are read from the cache arrays, and
only the 8-byte double words that are partially or fully
updated are written to the cache arrays.
To further reduce latency, given that data reads and writes

may utilize a given cache data array for two 2 : 1 cycles,
the scheduler not only gives precedence to core fetch
operations but also enables them to interrupt other two 2 : 1
cycle operations already in progress.
Store-through traffic from the core represents the bulk

of the traffic managed by the L2 cache. A fully associative
16-deep 32-byte entry store cache absorbs every individual
store executed in the core or up to 16 bytes of store
traffic every core cycle. Up to four of the 32-byte store
cache entries, comprising updates to the same 128-byte
coherence granule, can be grouped together into a single
simultaneous coherence dispatch by the L2 scheduling logic.
To further reduce energy usage, the read/claim (RC)

machines, which have been utilized in prior designs to
manage core fetches, read–modify–write operations on
behalf of core stores, and core prefetch operations, have been
divided into two classes: 1) a set of eight fully functional
RC machines that are incorporated into the L2 cache
controller and manage core fetches and stores that hit the L2
cache and 2) a set of 24 more energy-efficient Blightweight[
RC machines that are incorporated into the L3 cache
controller and manage prefetches and stores that miss the
L2 cache. These lightweight RC machines stage data through
the L3 cache and will be described more fully in the
section on L3 cache.
This division between primarily low-latency/tenure

operations in the L2 RC machines and primarily high latency,
more plentiful operations in the L3 lightweight RC machines,
as well as the reduction in tenure of L2 RC machine
operations due to the eight core-cycle best case L2 latency
and speculative cache read for both load and store read
operations, has enabled the cache microarchitects to reduce
the number of L2 RC machines and associated cast-out
machines to eight, thereby reducing energy usage.
The L2 RC machines and L3 lightweight RC machines

aggressively reorder storage operations in order to fully
exploit the relaxed rules prescribed by the PowerPC storage
architecture, thereby enabling the high volume of system

1 : 18 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

coherence traffic needed to scale robustly to a large number
of sockets.
The symbiotic relationship between the fully functional

L2 RC machines and the lightweight L3 RC machines is
possible because of the tight coupling between a given
256-KB L2 cache and its corresponding 4-MB local L3
region, as well as the partial victim cache management policy
that governs their interactions. At times, they behave in a
traditional exclusive victim-cache manner to better manage
capacity and enjoy the sum of their set associativity,
and at other times, they behave in the manner of an inclusive
cache hierarchy in order to reduce energy usage.
For example, when certain types of operations move a

given cache line in a given subset of the cache states from
the 4-MB local L3 region to the 256-KB L2, instead of
invalidating the L3 copy, they leave a shared copy. Later,
when the line ages out of the L2 cache, the cast-out machine
first queries the L3 directory. If the residual shared copy
still exists, then there is no need to read the data from the
L2 cache arrays, move it to the L3 cache, and write it to the
L3 cache arrays. Instead, a single write to the L3 directory
updates the state of the line in the L3, thereby saving the
energy that otherwise would have been expended.

L3 cache
The shared 32-MB POWER7 L3 cache is composed of
eight 4-MB L3 regions. Each L3 region utilizes 128-byte
lines and is eight-way set associative. A given L3 region
comprises a single centralized controller, with four address
hashed eDRAM cache data banks and four address hashed
SRAM directory banks. The local L3 region is tightly
coupled to the L2 cache associated with a given core. All L3
constructs operate in 2 : 1 cycles (defined in the L2 cache
section).
A 4-MB L3 region is comprised of 32 ultradense

high-speed eDRAM macros. The eDRAM macro has access
latency and cycle time characteristics slightly worse than
conventional 6T SRAM. As such, the combined effects of the
eDRAM access latency, the overhead of waiting on the
directory result before accessing the cache (to reduce energy
usage), and the overhead of traversing the L2 cache prior to
accessing the L3 cache are negligible. They are more than
counterbalanced by the beneficial latency of the 256-KB
L2 cache. Likewise, the slightly higher cycle time and
reduction in overall bandwidth per unit of capacity is
counterbalanced by the traffic reduction afforded by the
256-KB L2 cache. The refresh overhead, typically associated
with DRAM, is hidden by a parallel engine that refreshes
unused subarrays within each macro whenever operations
exercise the macro.
In stark contrast to conventional SRAM, the eDRAM

macro requires only one third the area and dissipates only
one fifth of the standby energy of an equivalent SRAM
macro. Less than 15% of the area of the POWER7 die is

consumed by the eDRAM macros comprising the 32-MB L3
cache, enabling not only eight powerful cores, but the
incorporation of high-bandwidth off-chip and on-chip
interconnects necessary for insuring robust system balance
and scalability.
At a higher level, by incorporating the eDRAM L3 cache

on the processor die, a 4-MB local L3 region enjoys roughly
one sixth the access latency of an off-chip L3 cache,
eliminating the need for a separate 4-MB on-chip SRAM
cache to provide equivalent low latency access. Instead of
incurring prohibitive off-chip bandwidth requirements to
support eight cores, the on-chip L3 cache provides twice
the bandwidth per core despite supporting four times as
many cores.
The centralized L3 region controller provides a single

core/L2 dispatch port, a single lateral L3 region dispatch
port, dual snoop dispatch ports (for even and odd cache
lines), and a single pool of operational resources.
Storage accesses that miss the L2 cache access the

4-MB local L3 region via the core/L2 dispatch port. Those
that hit in the 4-MB local L3 region are managed by a pool of
eight read machines. Prefetches and some L2 store misses
also access the L3 region via the core/L2 dispatch port and
are managed by a pool of 24 lightweight RC machines. When
prefetched data is staged to the L3 cache, it is managed
by a pool of ten write machines. Each write machine has
an associated cast-out machine to manage the eviction of
lines displaced by writes. Note that these write machines
are also utilized by other operations such as cast-outs and
cache-injections.
Storage accesses that miss both the L2 cache and the

4-MB local L3 region are broadcast to the coherence fabric
and snooped by the memory controller, other L2 caches,
possibly other L3 caches, and by the seven remote 4-MB L3
regions that comprise the remaining 28 MB of the on-chip L3
cache. Therefore, operations that miss the 4-MB local L3
region but hit in the remaining 28 MB of the L3 cache access
the cache via the snoop dispatch ports. L2 cast-out operations
access the 4-MB local L3 region via the core/L2 dispatch
port, whereas lateral cast-outs access a given 4-MB L3 region
via the lateral L3 region dispatch port (see targeted cases
below) or via the snoop dispatch ports (see state merge cases
below). All of the cast-out scenarios are described in detail
in the subsequent paragraphs.
As illustrated in Figure 10, the capacity, data flow logic,

and control flow logic of a 4-MB local L3 region are shared
between the L2 cache to which the local L3 region is
coupled, and the other seven 4-MB L3 regions on the chip.
The associated L2 cache utilizes the 4-MB local L3 region
directly as a victim cache. The other seven 4-MB L3 regions
on the chip also use the 4-MB local L3 region as a victim
cache under certain circumstances. Note that when the core
and L2 associated with a given L3 region are disabled,
the remaining L3 regions enjoy full access to the L3 region.

B. SINHAROY ET AL. 1 : 19IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

When the associated core and L2 are enabled, a number
of heuristics cooperate to give precedence to the associated
L2 cache while allowing load and capacity balancing among
all eight L3 regions on the chip, thereby causing them to
behave as a highly set-associative (64-way) adaptive 32-MB
L3 cache.
The replacement algorithm serves as a primary heuristic

in creating this balance. It categorizes all lines in the L3
cache into the following two classes:

1. Those installed as victims via a cast-out operation by
the associated L2 cache.

2. Those installed as victims via a lateral cast-out operation
by one of the other seven L3 regions, those that are
residual shared copies of lines that have been moved to
the local L2 cache, and those that are invalid.

For a given set in the cache, a fully ordered list is
maintained for each class. When a cast-out from the
associated L2 needs to allocate a line, it preferentially
selects the LRU line from the second class, but if no
second-class lines exist, it selects the LRU line from the
first class. Note that the cast-out will not need to allocate a
line if it finds a copy of itself or if it finds an invalid slot.
If the line finds a copy of itself (see the case described in the

L2 cache section), energy usage is reduced since no data
is moved, and the cache states of the two copies are merged.
If the line finds an invalid slot, it allocates without displacing
another line. L2 cast-out operations are managed in the
L3 region by a pool of ten L3 write machines and ten
associated L3 cast-out machines.
When a lateral cast-out from an L3 region finds a copy

of the line (in a subset of the valid states) in any of the other
L3 regions within the lateral cast-out broadcast scope, the
states of the two copies are merged at the destination, and no
data is moved, saving energy (similar to the L2 cast-out
case). Otherwise, a set of heuristics weigh the usage pattern
(both capacity usage and traffic volume) of the targeted
region to determine whether to accept the lateral cast-out.
If the lateral cast-out is accepted by the targeted L3 region
and needs to allocate a line (i.e., it does not find an invalid
slot), it also preferentially selects the LRU line from
the second class, only displacing a first-class line if no
second-class lines exist. In order to allow for growth in
the set of candidate second-class lines, whenever a lateral
cast-out is accepted by a given L3 region, the LRU first-class
line begins a transformation that will eventually convert it to
a most recently used second class, thereby gradually
enlarging the supply of second-class lines. Lateral cast-out
operations that move data to a targeted L3 region are

Figure 10

L3 region behavior.

1 : 20 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

managed in the L3 region by a pool of ten L3 write machines
and ten associated L3 cast-out machines.
When a line is evicted from an L3 region (due to an

L2 cast-out, a lateral cast-out from another L3 region, a
prefetch operation, or a cache injection operation), if the
evicted line is second class and has a Bdirty[state, it is
written back to memory. If the evicted line is first class,
a set of heuristics weigh the cache state and the usage pattern
(capacity) of the evicting cache to determine whether to
laterally cast-out the line to another L3 region or to
immediately write it back to memory (if it is Bdirty[).
If the line is laterally cast-out, another set of heuristics
determine which of the other seven L3 regions to target based
upon past history, reference pattern, and system firmware
control. L3 cast-out operations are managed in the L3 region
by a pool of ten L3 cast-out machines.

Memory subsystem
Each POWER7 chip includes two integrated memory
controllers, each supporting up to four memory channels.
A given memory channel can be connected through an
off-chip interface to a memory buffer chip.
Supplying ample memory bandwidth and capacity to

support a balanced eight-core chip presents a significant
challenge. To meet this challenge, the POWER7 memory
subsystem microarchitects employed a multifaceted strategy:

1. Exploiting the elimination of the off-chip L3 cache
interface by allocating more off-chip signaling resource
to the memory interface.

2. Developing a strategic high-frequency differential
signaling technology to provide increased bandwidth
per signal while reducing energy usage.

3. Employing a lower overhead cyclic redundancy check
(CRC)-based error detection protocol.

4. Developing a hierarchical buffering scheme that provides
direct access to two memory ports from each buffer chip.

5. Exploiting DDR3 memory technology to provide
increased memory access frequency at the expense
of more complex scheduling rules and more complex
error correction codes (ECCs).

6. Developing advanced scheduling algorithms with
increased reordering capability to achieve higher interface
utilization despite the more complex DDR3 scheduling
rules and more complex ECC.

7. Allocating more buffering resource to provide a larger
pool of read and write operations to the advanced
scheduler.

While the POWER6 chip allocates roughly 400 off-chip
signal I/Os to the memory interface, the POWER7 chip
increases this to roughly 640. The lower frequency interface
utilized by the POWER6 memory subsystem has been
replaced by a 6.4-GHz high-speed differential signaling

interface. Additionally, the inline ECCs utilized by the
POWER6 channel have been replaced by a lower overhead
CRC for the POWER7 channel. The net effect is an increase
in raw signal bandwidth from 75 GB/s with the POWER6
interface to 180 GB/s with the POWER7 interface.
By providing a dual port interface between the buffer

chip and the memory chips, and enabling the usage of
800-, 1,066-, 1,333-, and 1,600-MHz DDR3 memory chips,
the POWER7 memory subsystem microarchitects greatly
increased the raw DRAM bandwidth per buffer chip available
to the channel scheduler. Similar to the POWER6 buffer chip,
each POWER7 buffer chip port provides 8 bytes (72 bits)
of DRAM bandwidth at DRAM frequency, adding up to
16 bytes for both ports. Additionally, the dual port interface
enables twice as many memory chips to be connected to a
POWER7 chip, thereby increasing the memory capacity.
In certain system configurations, the memory subsystem
will provide up to 256 GB of memory per POWER7 chip
(up to 32 GB per core).
The scheduling rules for DDR3 memory create an

additional challenge in arranging data. The POWER6 design
spreads a 128-byte cache line across four 72-bit memory
channels, yielding a 32-byte-wide data word protected by
32 bits of ECC. DDR2 scheduling rules are structured to
optimally manage data in four-beat packets. Four beats of
32-byte-wide data words cleanly map to operations that
manipulate 128-byte data granules. DDR3 scheduling rules
are structured to optimally manage data in eight-beat packets.
Therefore, the POWER7 design maps 128-byte cache lines
into eight-beats of 16-byte-wide data words. That is,
it spreads a given 128-byte-cache across only two 72-bit
memory channels instead of four, yielding a 16-byte-wide
data word protected by only 16 bits of ECC. In order to
provide improved memory reliability, the POWER7 memory
subsystem microarchitects developed a more complex,
but significantly more robust, 64-byte marking code that
employs 64 bits of ECC spread across four beats.
To support the wide variety of DDR3 frequencies

efficiently, the 4 : 1 relationship between channel frequency
and DRAM frequency that is supported by the POWER6
memory controller is augmented by a 6 : 1 relationship that
is supported by the POWER7 memory controller. Table 3
shows the raw peak bandwidth available at both the
processor-to-buffer channel and at the buffer-to-DRAM
interface for varying speed grades.
In order to capitalize on the increase in DRAM data

bandwidth and channel bandwidth needed to satisfy the
eight powerful cores, the memory subsystem microarchitects
have invested significant resources into the buffering and
reordering capabilities and significant sophistication into
the scheduler. This provides a structure that accommodates
the additional scheduling complexity resulting from the
DDR3 rules, two channel-to-DRAM speed ratios, the
reorganization of data into two channel pairs per controller,

B. SINHAROY ET AL. 1 : 21IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

the pipeline feedback effects of the CRC-based channel
error management scheme, and the pipeline impacts of the
multibeat 64-byte ECC marking code DRAM error
management scheme. In certain system configurations,
the POWER7 memory subsystem will provide in excess of
100 GB/s sustained memory bandwidth per chip (in excess of
12 GB/s per core).
The POWER7 memory subsystem includes accelerators

for executing several new atomic memory update operations.
These accelerators are architected to operate in concert with
the intelligent network interface found in the cluster
interconnect chip (described in the section on the cluster
interconnect). The memory scheduler is further optimized to
support these operations efficiently despite highly irregular
access patterns. This capability enables large HPC clustered
systems to provide global shared memory semantics without
consuming processor resources local to the memory.
Similar to the POWER6 design, each memory controller is

divided into two regions that operate at different frequencies.
The synchronous region operates at the on-chip bus
frequency, which, under ideal circumstances, is slightly faster
than the 2 : 1 cycle (described in the section on the L2
cache). It manages the interaction with the on-chip coherence
and data interconnect and participates as a point of coherence
for the memory ranges it maps. It services reads and writes,
arbitrates among conflicting requests, and manages
coherence directory information. Each memory controller
provides 64 general-purpose coherence management
machines and 16 additional lightweight machines for
managing data-zeroing operations. For read operations,
numerous heuristics are employed to determine whether
to access memory speculatively or to wait until a final
coherence response notification has been received, essentially
balancing access latency and energy usage.
Operations are passed from the synchronous region to the

asynchronous region, which operates at one half of the
channel frequency, or twice as fast as the DRAM when
the channel is in 4 : 1 mode, and three times as fast as the
DRAM when the channel is in 6 : 1 mode. It manages the
interaction with the buffer chips and by extension, the
DRAM chips. It includes the scheduler, which manages
traffic through the channels and buffer chip, and schedules
reads, writes, and maintenance operations such as refreshes
and scrubs, carefully balancing and maximizing the

utilization of both the channel and the banking resources
within the DRAM chips. At its disposal the scheduler has
enough buffering to reorder up to 64 operations of up to
128 bytes each, providing a rich pool of scheduling
opportunities (up to 16 KB per POWER7 chip). It manages
the recovery from channel CRC errors and numerous types
of 64-byte DRAM ECC errors while balancing several
power control heuristics that limit memory access rates and
place various portions of memory into different power
management modes.

I/O subsystem
The POWER7 chip supports two integrated I/O controllers.
They are built upon the same architectural foundation as
the I/O controllers found in the POWER4, POWER5,
and POWER6 chips. Each of the controllers supports a
proprietary 4-byte off-chip read interface and a 4-byte
off-chip write interface, thereby connecting the POWER7
chip to up to two I/O hub chips. These interfaces operate
at frequencies ranging from 1.25 to 2.5 GHz, depending on
the I/O hub chips to which they are connected. In addition
to supporting the interrupt presentation function, pipelined
I/O high-throughput mode, and advanced partial DMA
write management pioneered in the POWER6 design, the
POWER7 I/O controllers also support cache injection,
which enables DMA write traffic to be written directly
into a cache, instead of to memory.
By retaining the same I/O controller architecture,

POWER7 systems are highly compatible with the POWER6
I/O ecosystem. However, by doubling the number of
controllers per POWER7 chip, higher I/O throughput is
enabled.

On-chip interconnect
As shown in Figure 1, the POWER7 chip contains
eight cores, each with an associated L2 cache and local L3
region, two memory controllers, two I/O controllers, and a
multichip SMP interconnect capable of scaling up to
32 POWER7 chips into a single large SMP system.
Consequently, each POWER7 chip contains several
coherence request, snoop, response, and notification
interfaces and several data interfaces.
These are tied together by a high-bandwidth intelligent

on-chip coherence and data interconnect that physically

Table 3 IBM POWER7 memory configurations.

1 : 22 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

occupies a horizontal equatorial trunk that runs across the
center of the POWER7 chip. An emerging necessity, due to
the multicore nature of the POWER7 design, the on-chip
interconnect also manages the POWER7 capability to
independently adjust individual core frequencies and
accommodates the ensuing coherence and data flow
variations. The on-chip interconnect operates at a frequency
(called the on-chip bus frequency), which, under ideal
circumstances, is slightly faster than the 2 : 1 cycle
(described in the section on the L2 cache). The on-chip bus
frequency is static and is consistent across all of the
POWER7 chips in a system.
In order to continue to provide the high-scalability

low-latency characteristics of earlier POWER server
processors, the POWER7 processor utilizes a similar
nonblocking-broadcast-based coherence-transport
mechanism, based upon the same distributed management
relaxed-order-optimized multiscope enablement provided by
the POWER6 platform.
The on-chip coherence interconnect routes two sets

(even and odd cache line) of coherence requests through the
horizontal trunk, inward toward the even/odd arbitration
logic located at the center of the chip. Up to one even request
and one odd request may be granted each on-chip bus
cycle. Once granted, the requests are broadcast within the
chip on the even/odd snoop buses outward toward the
left and right edges of the chip. Requests that will be
routed to other chips are also sent to the multichip SMP
interconnect (discussed in the multichip interconnect section)
via a central vertical spine toward the top and bottom
edges of the chip. Requests that have arrived from other
chips are managed by the even/odd arbitration logic and
broadcast to the snoop buses.
Coherence responses from the snoopers are routed inward

along the horizontal trunk toward the even/odd coherence
decision logic located at the center of the chip. For requests
that have been routed to other chips, additional responses
from the off-chip snooper are fed into the coherence decision
logic. Once a final coherence decision is made in response
to a given request, a notification is broadcast within the
chip on the even/odd notification buses outward from the
center toward the left and right edges of the chip.
Notifications that will be routed to other chips are also sent
to the multichip SMP interconnect via the central vertical
spine toward the top and bottom edges of the chip.
Because the coherence flow is nonblocking, the rate at

which requests may be scheduled onto the snoop buses is
restricted by the snooper with the lowest possible snoop
processing rate. The central coherence arbitration logic
must insure that requests (whether sourced from the chip
containing the slowest snooper or from another chip in
the system) do not overrun the slowest snooper. To
accommodate this, system firmware negotiates a Bfloor
frequency.[As individual processor frequencies are adjusted

upward and downward, none will ever fall beneath the
floor frequency. The coherence arbitration logic throttles the
rate at which requests are granted to insure that a snooper
operating at the floor frequency or higher can process all
the requests.
The on-chip data interconnect consists of eight 16-byte

buses that span the horizontal trunk. Four flow from left to
right, and the other four flow from right to left. These buses
are bracketed by memory controllers found at the left and
right edges of the chip. They are divided into multiple
segments, such that multiple 16-byte data packets may be
pipelined within the multiple segments of the same bus at any
given time. The buses operate at the on-chip bus frequency.
Each memory controller has two 16-byte on-ramps and

two 16-byte off-ramps that provide access to the eight buses.
Each core’s associated L2 cache and local L3 region share
one 16-byte on-ramp/off-ramp pair, as does the pair of I/O
controllers. The multichip data interconnect ports, found
in the central vertical spines have a total of seven 16-byte
on-ramp/off-ramp pairs. In total, there are twenty 16-byte
on-ramps and twenty 16-byte off-ramps that provide access
to and from the eight horizontal 16-byte trunk buses.
Each ramp pair is associated with a bus segment. Note that a
source-to-destination on-ramp/off-ramp route may consume
only a subset of the segments in the horizontal trunk,
depending upon the physical locations of the source
and destination.
Data transfers are managed by centralized arbitration logic

that takes into account source and destination locations,
allocates available bus segments to plot one of several
possible routes, allocates the on- and off-ramp resources,
and manages destination data buffering resources.
Note that since transfers may use only a subset of the
segments in a given trunk bus, multiple noninterfering
source-to-destination transfers may utilize the same
horizontal trunk bus simultaneously. The arbitration logic
must also account for the differing operating frequencies
of the processor cores. For example, a source core operating
at a lower frequency will send data via its on-ramp to the
trunk buses at a slower rate. Likewise, a destination core
operating at a lower frequency will consume data via its
off-ramp from the trunk buses at a slower rate. To manage
this, the arbitration logic controls speed-matching buffers in
all of the on-ramps/off-ramps.

Multichip interconnect
The POWER7 system topology is built upon the structure
that was developed for POWER6 systems. For standard
commercial systems, up to 32 POWER7 chips may be
connected to form a single 256-way SMP system.
Figure 11 depicts a first-level nodal structure, which

combines up to four POWER7 chips. Each chip has four
10-B/s on-node SMP links associated with the vertical spine
that emanates from the center of the chip toward the top edge.

B. SINHAROY ET AL. 1 : 23IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

In a standard commercial system, three of these four SMP
links are connected to each of the three other chips that
comprise a four-chip node. In this manner, the four chips are
fully connected.
A second-level system structure combines up to eight of

the nodes. Each chip has two 10B/s off-node SMP links
associated with the vertical spine that emanates from the
center of the chip toward the bottom edge. As shown in
Figure 12, in a standard commercial system, up to seven
of the eight off-node SMP links (coming from the four
POWER7 chips comprising a node) are connected to each of
the seven other nodes that comprise an eight-node system.
Just as in POWER6 systems, the POWER7 SMP links are

shared by coherence and data traffic and are protected by
single-error-correct double-error-detect (SECDED Hamming
code with additional parity) ECC. Unlike POWER6 systems,
which enforce a strict 50% coherence to 50% data ratio or
33% coherence to 67% data ratio, the POWER7 SMP links
enable a dynamic free-form allocation of coherence and data
traffic, enabling higher effective utilization of the links.
Additionally, to maximize SMP link bandwidth, the on- and
off-node SMP links do not operate at the on-chip frequency.
They are independently tuned, typically operating at speeds
ranging from 2.5 to 3.3 GHz, depending upon system
packaging characteristics, and provide increased flexibility
over the POWER6 SMP links.
Despite the topological similarity, the POWER7

nonblocking multichip coherence transport had to be
rearchitected due to the significant new challenges brought
about by the per-core variable frequency capability.
Based upon different system configurations, different
processor core floor frequency settings, different SMP
link frequencies, and the variation that arises from the

numerous asynchronous clock boundary crossings, the SMP
coherence microarchitects developed a highly programmable
sequencer that simultaneously balances priorities and flow
rates for coherence requests initiated three chip-hops, two
chip-hops, or one chip-hop away with those initiated from
the same chip to achieve a nonblocking flow within
prescribed latency variability and localized asynchronous
crossing burst compression parameters.
From a performance perspective, the multiscope coherence

capabilities introduced in the POWER6 design are critical
for enabling balanced POWER7 scaling, all the way to
32 chips with 256 processor cores. Key ingredients for
achieving robust multichip scalability are supporting a
high volume of general coherence operations, as well as
coherent atomic primitives, and being able to resolve them
with low latency [8].
Since the POWER4 design, a broadcast-based distributed

resolution coherence transport and rich cache coherence
protocol have facilitated low latency resolution. In
combination with the scheduling freedom enabled by the
relaxed rules of the PowerPC storage architecture, they have
also enabled extremely low overhead tracking structures,
which are further exploited by the aggressive coherence
reordering logic (also enabled by the relaxed storage
architecture) to provide a high volume of coherence
operations. For example, a 32-chip POWER7 system supports
in excess of 20,000 concurrent coherence operations.
However, the volume of coherence traffic is limited by

two physical constraints: 1) the bandwidth of the off-chip
SMP links and 2) the rate (related to the Bfloor frequency[)
at which the slowest snooper in the system can process
coherence operations. While both of these have improved
going from POWER6 chips to POWER7 chips, basic laws
of physics and economics restrict the improvement to less

Figure 11

IBM POWER7 first-level nodal topology.

Figure 12

IBM POWER7 second-level system topology.

1 : 24 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

than 1.5�, which is less than the 4� to 5� improvement in
system throughput.
Therefore, POWER7 systems heavily exploit the

speculative localized scope coherence broadcast capability
introduced in the POWER6 design. The localized regions
make use of enhanced scope prediction heuristics to partition
the coherence traffic, such that each region has full access
to its SMP link and snooper coherence bandwidth. In cases
where the speculation is successful, this has the effect of
multiplying the link and snooper bandwidths by the number
of regions. For example, dividing a large 256-way system
into eight nodal regions has the effect (to the degree of
successful speculation) of enabling each 32-way region to
privately enjoy the SMP link and snooper bandwidth that
would otherwise be shared across the whole system.

Cluster interconnect
For massive multipeta-FLOPs high-bandwidth clustered
systems, a specialized cluster interconnect chip has been
developed. The chip couples the POWER7 coherence and
data interconnect seamlessly into a cluster interconnect.
In this way, 32-way flat SMP systems are coupled to form
256-way SMP systems, which are interconnected to create a
massive 512-K processor cluster.
The cluster interconnect chip has an on- and off-chip

coherence and data interconnect that interoperates with
the POWER7 chip and provides an on-board memory
coherence directory (MCD) that expands upon the dual-scope
capabilities provided by the POWER7 13-state coherence
protocol. The MCD improves I/O subsystem throughput
by qualifying and vectoring DMA reads and writes to a
single target node, instead of broadcasting them to the entire
SMP system. It also accelerates streaming memory write
operations and reduces coherence scope misprediction
latencies.
Each cluster interconnect chip incorporates up to

three 16� PCI Express** Gen2 I/O subsystem interfaces,
a proprietary clustering interconnect interface, a
high-bandwidth integrated switch and router, and a set of
accelerators to process collective operations.
The cluster interconnect chip has four 10 B/s on-node SMP

links to directly connect to four POWER7 chips. Figure 13
illustrates how four POWER7 chips and one cluster
interconnect chip are fully interconnected to form a flat
32-way SMP nodal construct with an integrated cluster
interface. As described in Table 4, the connections between
the four POWER7 chips are doubled, providing twice the
nodal interconnect bandwidth as, compared with a standard
system.
Each cluster interconnect chip has seven 10 B/s off-node

SMP links, enabling each nodal construct to directly connect
to seven other nodal constructs, forming an eight-node
256-way SMP system, primarily to facilitate coherent I/O
sharing among the eight flat 32-way SMPs. The eight nodes

are fully connected in a manner similar to a standard 256-way
system shown in Figure 12.
In addition to SMP coherence and data traffic, the

seven off-node links also support cluster messaging traffic.
Combined with 24 dedicated first-level optical cluster links,
they enable a fully connected first-level cluster of 32 � 32
way SMP nodal constructs (or four 256-way SMP systems),
which is called a SuperNode. Each SuperNode has 32 cluster
interconnect chips and each cluster interconnect chip
has 16 second-level optical cluster links. Therefore, each
SuperNode has 512 available second-level optical cluster
links. A massive 512-K processor cluster is composed of up
to 512 SuperNodes, each directly connected to up to
511 neighboring SuperNodes via 511 of the 512 available
second-level optical interconnect links.

Reliability, availably, and serviceability
POWER7 reliability and availability features are highlighted
in Figure 14. POWER7 offers all the RAS features from
the previous generation POWER6 processor such as core
recovery, sparing, hot node add and repair, and redundant
oscillators.
In POWER6, the core recovery mechanism was

implemented through a separate recovery unit (RU), which
stores previous architected states so that on error detection
the processor core can be put back to an architected state
that existed before the error condition occurred [13].
In POWER7, since the previous architected states are available
in the register renaming mechanism implemented for

Figure 13

Cluster system first-level coherent nodal topology.

B. SINHAROY ET AL. 1 : 25IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

Figure 14

IBM POWER7 reliability and availability features.

Table 4 IBM POWER7 standard system and cluster system interfaces.

1 : 26 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

out-of-order execution, no separate RU was required.
When an error is detected and reported by a core unit,
the POWER7 core quickly blocks all instruction completion,
along with blocking all instruction fetch and dispatch. If the
error condition is not severe enough to cause a checkstop,
the core initiates the recovery process. The recovery process
flushes all the instructions in the pipeline for each thread to
put the core in an architected state that existed sometime
before the error condition occurred, fence the core from the
rest of the system (L2 and nest), run an automatic built-in
self-test to clear and test the core SRAM cells, reset each core
unit to clean up any errors and reset the state machines, refresh
the GPR and VSR files by initiating a state machine that
does a read/correct/write operation to each entry in the register
files to correct any single bit error through ECC correction
mechanism, drop the fence to L2 and nest, and then restart
instruction fetching and enable dispatch and completion.
To facilitate error detection and recovery in POWER7,

the big register files (such as GPR and VSR) are ECC
protected, whereas the smaller register files are protected
through parity; all SRAM cells have error detection and
recovery mechanisms. The I-cache is parity protected and
recoverable. The floating-point pipelines implement residue
checking mechanism, and numerous logic units implement
additional control checking mechanism. In addition,
POWER7 core uses RAS-hardened latches for various SPRs
and core configuration latches.
The L1 D-cache is protected by byte parity. Hardware

recovery is invoked on detection of a parity error while reading
the L1 D-cache for a load instruction. The load instruction
in error is not completed but rather flushed, the L1 D-cache
contents are invalidated, and the instructions are refetched and
reexecuted from the group of the load instruction in error.
Additionally, when a persistent hard error is detected either in
the L1 D-cache array or in its supporting directory or set
predict array, a set delete mechanism is used to prohibit the
offending set from being validated again. This allows the
processor core to continue execution with slightly degraded
performance until a maintenance action is performed.
Like the POWER6 design, the POWER7 L2 and L3

caches protect both data arrays and directory arrays with
SECDED ECC, and the error management hardware supports
autocorrection, autoinvalidation, autopurge capabilities,
and physical cell deletion.
The POWER7 memory subsystem enjoys numerous

enhancements in addition to those supported by the POWER6
memory subsystem. The 64-byte ECC algorithm allows a
failing DRAM chip to be Bkilled[through marking so that the
system can continue to run when an entire DRAM chip fails.
In addition, certain system configurations provide spare
DRAM chips so that a marked failed chip can be replaced by a
spare DRAM chip, while the system is running. After the
contents of the failed chip are Bsteered[to the spare chip,
the ECC mark can be used to correct another chip kill error.

In certain system configurations, up to three complete
DRAM chip failures per rank can be successfully corrected
using the combination of chip sparing and marking.
The POWER7 memory channel design includes spare

signal lanes that can be used to repair a failed channel lane
dynamically, while the system is running. Hardware CRC
counters and thresholding are used to cause a lane sparing
action when an excessive CRC error rate is detected.
Firmware also monitors each memory channel and can
command a lane sparing action whenever a CRC rate is
detected, which is not high enough to cause the hardware
CRC threshold to be exceeded but is high enough to impact
system performance.
In addition to memory channel CRC error detection,

the POWER7 memory buffer chip contains logic to detect
many internal error events. When a channel CRC or internal
error event is detected, the internal buffer chip state is reset or
repaired, and all memory operations in flight are retried.
This provides a high level of fault tolerance for channel or
buffer logic soft errors.
To provide an even higher level of reliability, certain

system configurations provide a selective memory mirroring
capability. In this mode, sections of memory are mirrored
across memory channel pairsVmemory writes are done to
mirrored memory on both channel pairs, and mirrored
memory reads are done from one of the channel pairs. If a
hard memory ECC error or channel fail error occurs, correct
data can be retrieved from the mirrored memory copy.
The sections of memory to be mirrored can be dynamically
selected and can coexist with sections of memory that are not
mirrored. This flexibility allows users to select mirrored
memory storage for critical applications and nonmirrored
memory for less critical applications, thus providing high
reliability without significantly increasing the total storage
capacity required.

Summary
POWER7 continues the tradition of innovation in POWER
line of processors. This seventh-generation chip adds
balanced multicore design, eDRAM technology, and
SMT4 to the POWER innovation portfolio. The POWER7
chip has four times as many cores and eight times as
many threads, compared with POWER6 chip, as well as
eight times as many FLOPs per cycle. The balanced design
allows the processor to scale from a single socket low-end
blade to a high-end enterprise system with 32 sockets,
256 cores, and 1024 threads. This new innovative design
provides more than 4� performance increase per chip,
compared with the previous generation POWER6 processor.

Acknowledgments
This paper is based upon work supported by the Defense
Advanced Research Projects Agency under its Agreement
No. HR0011-07-9-0002.

B. SINHAROY ET AL. 1 : 27IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.

**Trademark, service mark, or registered trademark of PCI-SIG,
InfiniBand Trade Association, or Sony Computer Entertainment
Corporation in the United States, other countries, or both.

References
1. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and

B. Sinharoy, BPOWER4 system microarchitecture,[IBM J. Res. &
Dev., vol. 46, no. 1, pp. 5–25, Jan. 2002.

2. B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and
J. B. Joyner, BPOWER5 system microarchitecture,[IBM J. Res. &
Dev., vol. 49, no. 4/5, pp. 505–521, Jul. 2005.

3. R. Kalla, B. Sinharoy, and J. Tendler, BIBM POWER5 chip:
A dual-core multithreaded processor,[IEEE Micro, vol. 24, no. 2,
pp. 40–47, Mar./Apr. 2004.

4. H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell,
D. Q. Nguyen, B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and
M. T. Vaden, BIBM POWER6 microarchitecture,[IBM J. Res. &
Dev., vol. 51, no. 6, pp. 639–662, Nov. 2007.

5. L. Eisen, J. J. W. Ward, III, H. Tast, N. Mäding, J. Leenstra,
S. M. Mueller, C. Jacobi, J. Preiss, E. M. Schwarz, and
S. R. Carlough, BIBM POWER6 accelerators: VMX
and DFU,[IBM J. Res. & Dev., vol. 51, no. 7, pp. 663–684,
Nov. 2007.

6. R. Kalla and B. Sinharoy, BPOWER7: IBM’s next generation
POWER microprocessor,[presented at the Hot Chips 21,
Stanford, CA, Aug. 2009, DOI: doi.ieeecomputersociety.org/
10.1109/MM.2010.2.

7. R. Kalla and B. Sinharoy, BPOWER7: IBM’s next-generation
server processor,[IEEE Micro, vol. 30, no. 2, pp. 7–15,
Mar./Apr. 2010.

8. W. Starke, BPOWER7: IBM’s next generation, balanced
POWER server chip,[presented at the Hot Chips 21, Stanford,
CA, Aug. 2009, DOI: doi.ieeecomputersociety.org/10.1109/
MM.2010.2.

9. D. F. Wendel, R. Kalla, J. Warnock, R. Cargnoni, S. G. Chu,
J. G. Clabes, D. Dreps, D. Hrusecky, J. Friedrich, S. Islam,
J. Kahle, J. Leenstra, G. Mittal, J. Paredes, J. Pille, P. J. Restle,
B. Sinharoy, G. Smith, W. J. Starke, S. Taylor,
A. J. Van Norstrand, S. Weitzel, P. G. Williams, and V. Zyuban,
BPOWER7, a highly parallel, scalable multi-core high end
server processor,[IEEE J. Solid-State Circuits, vol. 46, no. 1,
pp. 145–161, Jan. 2011.

10. POWER ISA, ver. 2.06. [Online]. Available: http://www.
power.org/resources/downloads/PowerISA_V2.06B_V2_
PUBLIC.pdf

11. S. S. Iyer, J. E. Barth, Jr., P. C. Parries, J. P. Norum, J. P. Rice,
L. R. Logan, and D. Hoyniak, BEmbedded DRAM: Technology
platform for the blue gene/L chip,[IBM J. Res. & Dev., vol. 49,
no. 2/3, pp. 333–350, Mar. 2005.

12. S. S. Iyer, G. Freeman, C. Brodsky, A. I. Chou, D. Corliss,
S. H. Jain, N. Lustig, V. McGahay, S. Narasimha, J. Norum,
K. A. Nummy, P. Parries, S. Sankaran, C. D. Sheraw,
P. R. Varanasi, G. Wang, M. E. Weybright, X. Yu, E. Crabbe, and
P. Agnello, B45-nm silicon-on-insulator CMOS technology
integrating embedded DRAM for high-performance server
and ASIC applications,[IBM J. Res. & Dev., vol. 55, no. 3,
pp. 5:1–5:14, 2011.

13. M. J. Mack, W. M. Sauer, S. B. Swaney, and B. G. Mealey,
BIBM POWER6 reliability,[IBM J. Res. & Dev., vol. 51, no. 6,
pp. 763–774, Nov. 2007.

Received November 17, 2010; accepted for publication
February 14, 2011

Balaram Sinharoy IBM Systems and Technology Group,
Poughkeepsie, NY 12601 USA (balaram@us.ibm.com). Dr. Sinharoy is
an IBM Distinguished Engineer and the Chief Architect of the IBM
POWER7 processor. Before POWER7, he was the Chief Architect
for the POWER5 processor. He has published numerous articles and
received more than 50 patents in the area of computer architecture,
with many more patents pending. Dr. Sinharoy also received
several IBM corporate awards for his work in different generations
of POWER microprocessors. He is an IBM Master Inventor and an
IEEE Fellow.

Ron Kalla IBM Systems and Technology Group, Austin, TX 78758
USA (rkalla@us.ibm.com). Mr. Kalla is the Chief Engineer for IBM
POWER7. He has 25 years of processor design experience. He has
worked on processors for IBM S/370, M68000, iSeries*, and pSeries*
machines. He holds numerous patents on processor architecture.
He also has an extensive background in post silicon hardware bring-up
and verification. He has 30 issued U.S. patents and is an IBM
Master Inventor.

William J. Starke IBM Systems and Technology Group, Austin,
TX 78758 USA (wstarke@us.ibm.com). Mr. Starke joined IBM in
1990 after graduating from Michigan Technological University with
a B.S. degree in computer science. He is a Senior Technical Staff
Member in the POWER development team of the Systems and
Technology Group. After several years of cache hierarchy and
symmetric multiprocessor hardware performance analysis for both
IBM mainframe and POWER server development programs,
he transitioned to logic design and microarchitecture development,
working initially on the POWER4 and POWER5 programs. Mr. Starke
led the development of the POWER6 cache hierarchy and SMP
interconnect and served as the Chief Architect for the POWER7 storage
hierarchy (i.e., cache hierarchy, SMP interconnect, memory subsystem,
and I/O subsystem). He currently serves in the Storage Hierarchy
Chief Architect role for the POWER8* program. A prolific innovator,
Mr. Starke holds more than 100 issued U.S. patents, in addition to
several currently pending.

Hung Q. Le IBM Systems and Technology Group, Austin, TX
78758 USA (hung@us.ibm.com). Mr. Le joined IBM in 1979 after
graduating from Clarkson University with a B.S. degree in Electrical
and Computer Engineering. He is an IBM Fellow in the POWER
development team of the Systems and Technology Group. He worked
on the development of several IBM mainframe and POWER/PowerPC
processors and has been contributing to the technical advancement
of IBM processor technology. His technical interests are in the field
of processor design involving multithreading, out of order design,
thread level parallelism for multi core. He currently holds more than
90 U.S. issued patents.

Robert Cargnoni IBM Systems and Technology Group, Austin,
TX 78758 USA (cargnoni@us.ibm.com). Mr. Cargnoni received a
B.S. and M.S. degrees in electrical engineering from the University
of Illinois at Urbana-Champaign. He is the Chief Engineer for the
IBM POWER7 cache hierarchy, coherence protocol, SMP interconnect,
and memory and I/O subsystems. He held key leadership positions in
the POWER4 and POWER5 programs as well.

James A. Van Norstrand IBM Systems and Technology
Group, Austin, TX 78758 USA (njvan@us.ibm.com). Mr. Van
Norstrand graduated from Syracuse University in 1982 with a B.S.E.E.
degree. He is a Senior Technical Staff Member in the POWER
development team. He was the unit lead for the instruction fetch unit
in POWER7. Before POWER7, he was the core lead on the Cell
Broadband Engine** chip, POWER4 lab manager, and zSeries designer
for the instruction fetch unit.

1 : 28 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

Bruce J. Ronchetti IBM Systems and Technology Group,
Austin, TX 78758 USA (ronchett@us.ibm.com). Mr. Ronchetti joined
IBM in 1979 after receiving a B.S. degree in electrical engineering
from Lafayette College. He is a Senior Technical Staff Member in the
POWER system development area. For the past 12 years, he has
focused on processor core microarchitecture development, particularly
in load and store units.

Jeffrey Stuecheli IBM Systems and Technology Group, Austin,
TX 78758 USA (wstarke@us.ibm.com). Mr. Stuecheli has a B.S. degree
in computer engineering in 1997 and an M.S. degree in 2004, both
from the University of Texas at Austin. He expects to receive his
Ph.D. degree in May 2011. He joined IBM in 1997 and is a Senior
Engineer in the POWER development team of the IBM Systems
and Technology Group. His current focus is on enhancements to
the memory subsystem targeting increased performance.

Jens Leenstra IBM Systems and Technology Group, Boeblingen
D-71032, Germany (leenstra@de.ibm.com). Dr. Leenstra is an IBM
Senior Technical Staff Member and the lead for the IBM POWER7
vector and scalar unit. He worked on the design and verification of
I/O chips, multiprocessor system verification of the IBM S/390 G2 and
G3 mainframe computers, the Cell Broadband Engine processor
synergistic processing elements, and POWER6 processor VMX unit.
He has 20 issued patents and is an IBM Master Inventor.

Guy L. Guthrie IBM Systems and Technology Group, Austin,
TX 78758 USA (gguthrie@us.ibm.com). Mr. Guthrie received a
B.S. degree in electrical engineering from Ohio State University. He is
a Senior Technical Staff Member in the POWER development team
of the Systems and Technology Group and is an architect for the
IBM POWER7 cache hierarchy, coherence protocol, SMP interconnect,
and memory and I/O subsystems. He served in a similar role for
POWER4, POWER5, POWER6 programs as well. Prior to that,
he worked as a hardware development engineer on several PCI Host
Bridge designs and also worked in the IBM Federal Systems
Division on a number of IBM Signal Processor Development programs.
He is an IBM Master Inventor and holds more than 100 issued
U.S. patents.

Dung Q. Nguyen IBM Systems and Technology Group, Austin,
TX 78758 USA (dqnguyen@us.ibm.com). Mr. Nguyen joined IBM
in 1986 after graduating from the University of Michigan with an
M.S. degree in materials engineering. He is a Senior Engineer in the
POWER development team of the Systems and Technology Group.
He has worked on the development of several processors, including
POWER3*, POWER4, POWER5, POWER6, and POWER7. He is
currently working on the POWER8 microprocessor. Mr. Nguyen
technical interests are in the field of processor design involving
instruction sequencing and multithreading.

Bart Blaner IBM Systems and Technology Group, Essex Junction,
VT 05452 USA (blaner@us.ibm.com). Mr. Blaner earned a B.S.E.E.
degree from Clarkson University. He is a Senior Technical Staff
Member in the POWER development team of the Systems and
Technology Group. He joined IBM in 1984 and has held a variety
of design and leadership positions in processor and ASIC development.
In the past several years, he has focused on POWER processor
microarchitecture and design, leading the POWER7 fixed-point unit
implementation. Recently his attention has turned to design and
implementation of hardware accelerators for compute-intensive
algorithms. He is a Senior Member of the IEEE and holds more than
30 patents.

Charles F. Marino IBM Systems and Technology Group, Austin,
TX 78758 USA (marinoc@us.ibm.com). Mr. Marino received his
B.S. degree in electrical and computer engineering from
Carnegie-Mellon University. He is a Senior Engineer in the IBM
Systems and Technology Group. In 1984, he joined IBM in Owego,
New York. Mr. Marino is currently the fabric team lead for the IBM
POWER7 servers.

Eric Retter IBM Systems and Technology Group, Austin, TX
78758 USA (retter@us.ibm.com). Mr. Retter joined IBM in 1985
after graduating from the Pennsylvania State University with a
B.S. degree in engineering science. He is a Senior Engineer in the
POWER development team of the Systems and Technology Group.
He began his career in the IBM Federal Systems Division in Owego,
New York, working as a logic designer and team lead on multiple
military avionics computer programs. In 1997 he joined the IBM
Digital Video Products Group in Endicott, New York, as a logic
designer for digital set-top box system-on-a-chip designs, and later
served as Program Technical Lead for the IBM Digital Video Products
Group’s low-cost set-top box chip. In 2003 Mr. Retter transferred to
the IBM Systems and Technology Group in Austin, Texas, working
initially as a logic designer on the POWER6 memory controller,
and later as logic team lead for the POWER6 and POWER7 memory
controller designs. He currently serves in the memory controller
Logic Team Lead role for the POWER8 program.

Phil Williams IBM Systems and Technology Group, Austin,
TX 78758 USA (willamp@us.ibm.com). Mr. Williams is a graduate
of Missouri Institute of Technology. He is a Senior Engineer and
currently the Lead Designer for embedded DRAM cache on POWER
processors. He has worked in a variety of areas on processors in his
30 years at IBM and holds numerous patents in the areas of branch
instruction processing, caches, and interconnects.

B. SINHAROY ET AL. 1 : 29IBM J. RES. & DEV. VOL. 55 NO. 3 PAPER 1 MAY/JUNE 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

